| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aspval.a | ⊢ 𝐴  =  ( AlgSpan ‘ 𝑊 ) | 
						
							| 2 |  | aspval.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 4 | 1 2 3 | aspval | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ( 𝐴 ‘ 𝑆 )  =  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑡 } ) | 
						
							| 5 |  | ssrab2 | ⊢ { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑡 }  ⊆  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 6 |  | inss1 | ⊢ ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ⊆  ( SubRing ‘ 𝑊 ) | 
						
							| 7 | 5 6 | sstri | ⊢ { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑡 }  ⊆  ( SubRing ‘ 𝑊 ) | 
						
							| 8 |  | fvex | ⊢ ( 𝐴 ‘ 𝑆 )  ∈  V | 
						
							| 9 | 4 8 | eqeltrrdi | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑡 }  ∈  V ) | 
						
							| 10 |  | intex | ⊢ ( { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑡 }  ≠  ∅  ↔  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑡 }  ∈  V ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑡 }  ≠  ∅ ) | 
						
							| 12 |  | subrgint | ⊢ ( ( { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑡 }  ⊆  ( SubRing ‘ 𝑊 )  ∧  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑡 }  ≠  ∅ )  →  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑡 }  ∈  ( SubRing ‘ 𝑊 ) ) | 
						
							| 13 | 7 11 12 | sylancr | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑡 }  ∈  ( SubRing ‘ 𝑊 ) ) | 
						
							| 14 | 4 13 | eqeltrd | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ( 𝐴 ‘ 𝑆 )  ∈  ( SubRing ‘ 𝑊 ) ) |