Metamath Proof Explorer


Theorem aspsubrg

Description: The algebraic span of a set of vectors is a subring of the algebra. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses aspval.a 𝐴 = ( AlgSpan ‘ 𝑊 )
aspval.v 𝑉 = ( Base ‘ 𝑊 )
Assertion aspsubrg ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → ( 𝐴𝑆 ) ∈ ( SubRing ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 aspval.a 𝐴 = ( AlgSpan ‘ 𝑊 )
2 aspval.v 𝑉 = ( Base ‘ 𝑊 )
3 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
4 1 2 3 aspval ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → ( 𝐴𝑆 ) = { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } )
5 ssrab2 { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } ⊆ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) )
6 inss1 ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ⊆ ( SubRing ‘ 𝑊 )
7 5 6 sstri { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } ⊆ ( SubRing ‘ 𝑊 )
8 fvex ( 𝐴𝑆 ) ∈ V
9 4 8 eqeltrrdi ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } ∈ V )
10 intex ( { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } ≠ ∅ ↔ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } ∈ V )
11 9 10 sylibr ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } ≠ ∅ )
12 subrgint ( ( { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } ⊆ ( SubRing ‘ 𝑊 ) ∧ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } ≠ ∅ ) → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } ∈ ( SubRing ‘ 𝑊 ) )
13 7 11 12 sylancr ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑡 } ∈ ( SubRing ‘ 𝑊 ) )
14 4 13 eqeltrd ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → ( 𝐴𝑆 ) ∈ ( SubRing ‘ 𝑊 ) )