Step |
Hyp |
Ref |
Expression |
1 |
|
aspval.a |
⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) |
2 |
|
aspval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
4 |
1 2 3
|
aspval |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ) |
5 |
|
ssrab2 |
⊢ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ⊆ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) |
6 |
|
inss1 |
⊢ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ⊆ ( SubRing ‘ 𝑊 ) |
7 |
5 6
|
sstri |
⊢ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ⊆ ( SubRing ‘ 𝑊 ) |
8 |
|
fvex |
⊢ ( 𝐴 ‘ 𝑆 ) ∈ V |
9 |
4 8
|
eqeltrrdi |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ∈ V ) |
10 |
|
intex |
⊢ ( { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ≠ ∅ ↔ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ∈ V ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ≠ ∅ ) |
12 |
|
subrgint |
⊢ ( ( { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ⊆ ( SubRing ‘ 𝑊 ) ∧ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ≠ ∅ ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ∈ ( SubRing ‘ 𝑊 ) ) |
13 |
7 11 12
|
sylancr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑡 } ∈ ( SubRing ‘ 𝑊 ) ) |
14 |
4 13
|
eqeltrd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) ∈ ( SubRing ‘ 𝑊 ) ) |