Step |
Hyp |
Ref |
Expression |
1 |
|
aspval.a |
⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) |
2 |
|
aspval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
aspval.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
4 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
5 |
4 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
6 |
5
|
pweqd |
⊢ ( 𝑤 = 𝑊 → 𝒫 ( Base ‘ 𝑤 ) = 𝒫 𝑉 ) |
7 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( SubRing ‘ 𝑤 ) = ( SubRing ‘ 𝑊 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = ( LSubSp ‘ 𝑊 ) ) |
9 |
8 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = 𝐿 ) |
10 |
7 9
|
ineq12d |
⊢ ( 𝑤 = 𝑊 → ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) = ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ) |
11 |
10
|
rabeqdv |
⊢ ( 𝑤 = 𝑊 → { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } = { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) |
12 |
11
|
inteqd |
⊢ ( 𝑤 = 𝑊 → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) |
13 |
6 12
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
14 |
|
df-asp |
⊢ AlgSpan = ( 𝑤 ∈ AssAlg ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
15 |
2
|
fvexi |
⊢ 𝑉 ∈ V |
16 |
15
|
pwex |
⊢ 𝒫 𝑉 ∈ V |
17 |
16
|
mptex |
⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ∈ V |
18 |
13 14 17
|
fvmpt |
⊢ ( 𝑊 ∈ AssAlg → ( AlgSpan ‘ 𝑊 ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
19 |
1 18
|
eqtrid |
⊢ ( 𝑊 ∈ AssAlg → 𝐴 = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
20 |
19
|
fveq1d |
⊢ ( 𝑊 ∈ AssAlg → ( 𝐴 ‘ 𝑆 ) = ( ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ‘ 𝑆 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ( ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ‘ 𝑆 ) ) |
22 |
|
eqid |
⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) |
23 |
|
sseq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ⊆ 𝑡 ↔ 𝑆 ⊆ 𝑡 ) ) |
24 |
23
|
rabbidv |
⊢ ( 𝑠 = 𝑆 → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } = { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
25 |
24
|
inteqd |
⊢ ( 𝑠 = 𝑆 → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
26 |
|
simpr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ 𝑉 ) |
27 |
15
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 𝑉 ↔ 𝑆 ⊆ 𝑉 ) |
28 |
26 27
|
sylibr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ∈ 𝒫 𝑉 ) |
29 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
30 |
2
|
subrgid |
⊢ ( 𝑊 ∈ Ring → 𝑉 ∈ ( SubRing ‘ 𝑊 ) ) |
31 |
29 30
|
syl |
⊢ ( 𝑊 ∈ AssAlg → 𝑉 ∈ ( SubRing ‘ 𝑊 ) ) |
32 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
33 |
2 3
|
lss1 |
⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ 𝐿 ) |
34 |
32 33
|
syl |
⊢ ( 𝑊 ∈ AssAlg → 𝑉 ∈ 𝐿 ) |
35 |
31 34
|
elind |
⊢ ( 𝑊 ∈ AssAlg → 𝑉 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ) |
36 |
|
sseq2 |
⊢ ( 𝑡 = 𝑉 → ( 𝑆 ⊆ 𝑡 ↔ 𝑆 ⊆ 𝑉 ) ) |
37 |
36
|
rspcev |
⊢ ( ( 𝑉 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∧ 𝑆 ⊆ 𝑉 ) → ∃ 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) 𝑆 ⊆ 𝑡 ) |
38 |
35 37
|
sylan |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∃ 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) 𝑆 ⊆ 𝑡 ) |
39 |
|
intexrab |
⊢ ( ∃ 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) 𝑆 ⊆ 𝑡 ↔ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ∈ V ) |
40 |
38 39
|
sylib |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ∈ V ) |
41 |
22 25 28 40
|
fvmptd3 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
42 |
21 41
|
eqtrd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |