| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aspval.a | ⊢ 𝐴  =  ( AlgSpan ‘ 𝑊 ) | 
						
							| 2 |  | aspval.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | aspval.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( Base ‘ 𝑤 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 5 | 4 2 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( Base ‘ 𝑤 )  =  𝑉 ) | 
						
							| 6 | 5 | pweqd | ⊢ ( 𝑤  =  𝑊  →  𝒫  ( Base ‘ 𝑤 )  =  𝒫  𝑉 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( SubRing ‘ 𝑤 )  =  ( SubRing ‘ 𝑊 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( LSubSp ‘ 𝑤 )  =  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 9 | 8 3 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( LSubSp ‘ 𝑤 )  =  𝐿 ) | 
						
							| 10 | 7 9 | ineq12d | ⊢ ( 𝑤  =  𝑊  →  ( ( SubRing ‘ 𝑤 )  ∩  ( LSubSp ‘ 𝑤 ) )  =  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 ) ) | 
						
							| 11 | 10 | rabeqdv | ⊢ ( 𝑤  =  𝑊  →  { 𝑡  ∈  ( ( SubRing ‘ 𝑤 )  ∩  ( LSubSp ‘ 𝑤 ) )  ∣  𝑠  ⊆  𝑡 }  =  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 } ) | 
						
							| 12 | 11 | inteqd | ⊢ ( 𝑤  =  𝑊  →  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑤 )  ∩  ( LSubSp ‘ 𝑤 ) )  ∣  𝑠  ⊆  𝑡 }  =  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 } ) | 
						
							| 13 | 6 12 | mpteq12dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑠  ∈  𝒫  ( Base ‘ 𝑤 )  ↦  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑤 )  ∩  ( LSubSp ‘ 𝑤 ) )  ∣  𝑠  ⊆  𝑡 } )  =  ( 𝑠  ∈  𝒫  𝑉  ↦  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 } ) ) | 
						
							| 14 |  | df-asp | ⊢ AlgSpan  =  ( 𝑤  ∈  AssAlg  ↦  ( 𝑠  ∈  𝒫  ( Base ‘ 𝑤 )  ↦  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑤 )  ∩  ( LSubSp ‘ 𝑤 ) )  ∣  𝑠  ⊆  𝑡 } ) ) | 
						
							| 15 | 2 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 16 | 15 | pwex | ⊢ 𝒫  𝑉  ∈  V | 
						
							| 17 | 16 | mptex | ⊢ ( 𝑠  ∈  𝒫  𝑉  ↦  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 } )  ∈  V | 
						
							| 18 | 13 14 17 | fvmpt | ⊢ ( 𝑊  ∈  AssAlg  →  ( AlgSpan ‘ 𝑊 )  =  ( 𝑠  ∈  𝒫  𝑉  ↦  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 } ) ) | 
						
							| 19 | 1 18 | eqtrid | ⊢ ( 𝑊  ∈  AssAlg  →  𝐴  =  ( 𝑠  ∈  𝒫  𝑉  ↦  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 } ) ) | 
						
							| 20 | 19 | fveq1d | ⊢ ( 𝑊  ∈  AssAlg  →  ( 𝐴 ‘ 𝑆 )  =  ( ( 𝑠  ∈  𝒫  𝑉  ↦  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 } ) ‘ 𝑆 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ( 𝐴 ‘ 𝑆 )  =  ( ( 𝑠  ∈  𝒫  𝑉  ↦  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 } ) ‘ 𝑆 ) ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑠  ∈  𝒫  𝑉  ↦  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 } )  =  ( 𝑠  ∈  𝒫  𝑉  ↦  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 } ) | 
						
							| 23 |  | sseq1 | ⊢ ( 𝑠  =  𝑆  →  ( 𝑠  ⊆  𝑡  ↔  𝑆  ⊆  𝑡 ) ) | 
						
							| 24 | 23 | rabbidv | ⊢ ( 𝑠  =  𝑆  →  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 }  =  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑆  ⊆  𝑡 } ) | 
						
							| 25 | 24 | inteqd | ⊢ ( 𝑠  =  𝑆  →  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 }  =  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑆  ⊆  𝑡 } ) | 
						
							| 26 |  | simpr | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  𝑉 ) | 
						
							| 27 | 15 | elpw2 | ⊢ ( 𝑆  ∈  𝒫  𝑉  ↔  𝑆  ⊆  𝑉 ) | 
						
							| 28 | 26 27 | sylibr | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ∈  𝒫  𝑉 ) | 
						
							| 29 |  | assaring | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  Ring ) | 
						
							| 30 | 2 | subrgid | ⊢ ( 𝑊  ∈  Ring  →  𝑉  ∈  ( SubRing ‘ 𝑊 ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝑊  ∈  AssAlg  →  𝑉  ∈  ( SubRing ‘ 𝑊 ) ) | 
						
							| 32 |  | assalmod | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  LMod ) | 
						
							| 33 | 2 3 | lss1 | ⊢ ( 𝑊  ∈  LMod  →  𝑉  ∈  𝐿 ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝑊  ∈  AssAlg  →  𝑉  ∈  𝐿 ) | 
						
							| 35 | 31 34 | elind | ⊢ ( 𝑊  ∈  AssAlg  →  𝑉  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 ) ) | 
						
							| 36 |  | sseq2 | ⊢ ( 𝑡  =  𝑉  →  ( 𝑆  ⊆  𝑡  ↔  𝑆  ⊆  𝑉 ) ) | 
						
							| 37 | 36 | rspcev | ⊢ ( ( 𝑉  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∧  𝑆  ⊆  𝑉 )  →  ∃ 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 ) 𝑆  ⊆  𝑡 ) | 
						
							| 38 | 35 37 | sylan | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ∃ 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 ) 𝑆  ⊆  𝑡 ) | 
						
							| 39 |  | intexrab | ⊢ ( ∃ 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 ) 𝑆  ⊆  𝑡  ↔  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑆  ⊆  𝑡 }  ∈  V ) | 
						
							| 40 | 38 39 | sylib | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑆  ⊆  𝑡 }  ∈  V ) | 
						
							| 41 | 22 25 28 40 | fvmptd3 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ( ( 𝑠  ∈  𝒫  𝑉  ↦  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑠  ⊆  𝑡 } ) ‘ 𝑆 )  =  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑆  ⊆  𝑡 } ) | 
						
							| 42 | 21 41 | eqtrd | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ( 𝐴 ‘ 𝑆 )  =  ∩  { 𝑡  ∈  ( ( SubRing ‘ 𝑊 )  ∩  𝐿 )  ∣  𝑆  ⊆  𝑡 } ) |