Step |
Hyp |
Ref |
Expression |
1 |
|
aspval2.a |
⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) |
2 |
|
aspval2.c |
⊢ 𝐶 = ( algSc ‘ 𝑊 ) |
3 |
|
aspval2.r |
⊢ 𝑅 = ( mrCls ‘ ( SubRing ‘ 𝑊 ) ) |
4 |
|
aspval2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
5 |
|
elin |
⊢ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) ) |
6 |
5
|
anbi1i |
⊢ ( ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ) |
7 |
|
anass |
⊢ ( ( ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ) ) |
8 |
6 7
|
bitri |
⊢ ( ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ) ) |
9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
10 |
2 9
|
issubassa2 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ↔ ran 𝐶 ⊆ 𝑥 ) ) |
11 |
10
|
anbi1d |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥 ) ) ) |
12 |
|
unss |
⊢ ( ( ran 𝐶 ⊆ 𝑥 ∧ 𝑆 ⊆ 𝑥 ) ↔ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) |
13 |
11 12
|
bitrdi |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) ) |
14 |
13
|
pm5.32da |
⊢ ( 𝑊 ∈ AssAlg → ( ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆 ⊆ 𝑥 ) ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) ) ) |
15 |
8 14
|
syl5bb |
⊢ ( 𝑊 ∈ AssAlg → ( ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) ) ) |
16 |
15
|
abbidv |
⊢ ( 𝑊 ∈ AssAlg → { 𝑥 ∣ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) } ) |
17 |
16
|
adantr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → { 𝑥 ∣ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) } ) |
18 |
|
df-rab |
⊢ { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆 ⊆ 𝑥 ) } |
19 |
|
df-rab |
⊢ { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 ) } |
20 |
17 18 19
|
3eqtr4g |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑥 } = { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } ) |
21 |
20
|
inteqd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∩ { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑥 } = ∩ { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } ) |
22 |
1 4 9
|
aspval |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆 ⊆ 𝑥 } ) |
23 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
24 |
4
|
subrgmre |
⊢ ( 𝑊 ∈ Ring → ( SubRing ‘ 𝑊 ) ∈ ( Moore ‘ 𝑉 ) ) |
25 |
23 24
|
syl |
⊢ ( 𝑊 ∈ AssAlg → ( SubRing ‘ 𝑊 ) ∈ ( Moore ‘ 𝑉 ) ) |
26 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
27 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
28 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
29 |
2 26 23 27 28 4
|
asclf |
⊢ ( 𝑊 ∈ AssAlg → 𝐶 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ 𝑉 ) |
30 |
29
|
frnd |
⊢ ( 𝑊 ∈ AssAlg → ran 𝐶 ⊆ 𝑉 ) |
31 |
30
|
adantr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ran 𝐶 ⊆ 𝑉 ) |
32 |
|
simpr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ 𝑉 ) |
33 |
31 32
|
unssd |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑉 ) |
34 |
3
|
mrcval |
⊢ ( ( ( SubRing ‘ 𝑊 ) ∈ ( Moore ‘ 𝑉 ) ∧ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑉 ) → ( 𝑅 ‘ ( ran 𝐶 ∪ 𝑆 ) ) = ∩ { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } ) |
35 |
25 33 34
|
syl2an2r |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑅 ‘ ( ran 𝐶 ∪ 𝑆 ) ) = ∩ { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶 ∪ 𝑆 ) ⊆ 𝑥 } ) |
36 |
21 22 35
|
3eqtr4d |
⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ( 𝑅 ‘ ( ran 𝐶 ∪ 𝑆 ) ) ) |