Metamath Proof Explorer


Theorem aspval2

Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars.EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015)

Ref Expression
Hypotheses aspval2.a 𝐴 = ( AlgSpan ‘ 𝑊 )
aspval2.c 𝐶 = ( algSc ‘ 𝑊 )
aspval2.r 𝑅 = ( mrCls ‘ ( SubRing ‘ 𝑊 ) )
aspval2.v 𝑉 = ( Base ‘ 𝑊 )
Assertion aspval2 ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → ( 𝐴𝑆 ) = ( 𝑅 ‘ ( ran 𝐶𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 aspval2.a 𝐴 = ( AlgSpan ‘ 𝑊 )
2 aspval2.c 𝐶 = ( algSc ‘ 𝑊 )
3 aspval2.r 𝑅 = ( mrCls ‘ ( SubRing ‘ 𝑊 ) )
4 aspval2.v 𝑉 = ( Base ‘ 𝑊 )
5 elin ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) )
6 5 anbi1i ( ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆𝑥 ) ↔ ( ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆𝑥 ) )
7 anass ( ( ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆𝑥 ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆𝑥 ) ) )
8 6 7 bitri ( ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆𝑥 ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆𝑥 ) ) )
9 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
10 2 9 issubassa2 ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ↔ ran 𝐶𝑥 ) )
11 10 anbi1d ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆𝑥 ) ↔ ( ran 𝐶𝑥𝑆𝑥 ) ) )
12 unss ( ( ran 𝐶𝑥𝑆𝑥 ) ↔ ( ran 𝐶𝑆 ) ⊆ 𝑥 )
13 11 12 bitrdi ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( SubRing ‘ 𝑊 ) ) → ( ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆𝑥 ) ↔ ( ran 𝐶𝑆 ) ⊆ 𝑥 ) )
14 13 pm5.32da ( 𝑊 ∈ AssAlg → ( ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝑥 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑆𝑥 ) ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶𝑆 ) ⊆ 𝑥 ) ) )
15 8 14 syl5bb ( 𝑊 ∈ AssAlg → ( ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆𝑥 ) ↔ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶𝑆 ) ⊆ 𝑥 ) ) )
16 15 abbidv ( 𝑊 ∈ AssAlg → { 𝑥 ∣ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶𝑆 ) ⊆ 𝑥 ) } )
17 16 adantr ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → { 𝑥 ∣ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶𝑆 ) ⊆ 𝑥 ) } )
18 df-rab { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∧ 𝑆𝑥 ) }
19 df-rab { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶𝑆 ) ⊆ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∧ ( ran 𝐶𝑆 ) ⊆ 𝑥 ) }
20 17 18 19 3eqtr4g ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑥 } = { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶𝑆 ) ⊆ 𝑥 } )
21 20 inteqd ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑥 } = { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶𝑆 ) ⊆ 𝑥 } )
22 1 4 9 aspval ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → ( 𝐴𝑆 ) = { 𝑥 ∈ ( ( SubRing ‘ 𝑊 ) ∩ ( LSubSp ‘ 𝑊 ) ) ∣ 𝑆𝑥 } )
23 assaring ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring )
24 4 subrgmre ( 𝑊 ∈ Ring → ( SubRing ‘ 𝑊 ) ∈ ( Moore ‘ 𝑉 ) )
25 23 24 syl ( 𝑊 ∈ AssAlg → ( SubRing ‘ 𝑊 ) ∈ ( Moore ‘ 𝑉 ) )
26 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
27 assalmod ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod )
28 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
29 2 26 23 27 28 4 asclf ( 𝑊 ∈ AssAlg → 𝐶 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ 𝑉 )
30 29 frnd ( 𝑊 ∈ AssAlg → ran 𝐶𝑉 )
31 30 adantr ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → ran 𝐶𝑉 )
32 simpr ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → 𝑆𝑉 )
33 31 32 unssd ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → ( ran 𝐶𝑆 ) ⊆ 𝑉 )
34 3 mrcval ( ( ( SubRing ‘ 𝑊 ) ∈ ( Moore ‘ 𝑉 ) ∧ ( ran 𝐶𝑆 ) ⊆ 𝑉 ) → ( 𝑅 ‘ ( ran 𝐶𝑆 ) ) = { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶𝑆 ) ⊆ 𝑥 } )
35 25 33 34 syl2an2r ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → ( 𝑅 ‘ ( ran 𝐶𝑆 ) ) = { 𝑥 ∈ ( SubRing ‘ 𝑊 ) ∣ ( ran 𝐶𝑆 ) ⊆ 𝑥 } )
36 21 22 35 3eqtr4d ( ( 𝑊 ∈ AssAlg ∧ 𝑆𝑉 ) → ( 𝐴𝑆 ) = ( 𝑅 ‘ ( ran 𝐶𝑆 ) ) )