| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aspval2.a | ⊢ 𝐴  =  ( AlgSpan ‘ 𝑊 ) | 
						
							| 2 |  | aspval2.c | ⊢ 𝐶  =  ( algSc ‘ 𝑊 ) | 
						
							| 3 |  | aspval2.r | ⊢ 𝑅  =  ( mrCls ‘ ( SubRing ‘ 𝑊 ) ) | 
						
							| 4 |  | aspval2.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 5 |  | elin | ⊢ ( 𝑥  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ↔  ( 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∧  𝑥  ∈  ( LSubSp ‘ 𝑊 ) ) ) | 
						
							| 6 | 5 | anbi1i | ⊢ ( ( 𝑥  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∧  𝑆  ⊆  𝑥 )  ↔  ( ( 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∧  𝑥  ∈  ( LSubSp ‘ 𝑊 ) )  ∧  𝑆  ⊆  𝑥 ) ) | 
						
							| 7 |  | anass | ⊢ ( ( ( 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∧  𝑥  ∈  ( LSubSp ‘ 𝑊 ) )  ∧  𝑆  ⊆  𝑥 )  ↔  ( 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∧  ( 𝑥  ∈  ( LSubSp ‘ 𝑊 )  ∧  𝑆  ⊆  𝑥 ) ) ) | 
						
							| 8 | 6 7 | bitri | ⊢ ( ( 𝑥  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∧  𝑆  ⊆  𝑥 )  ↔  ( 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∧  ( 𝑥  ∈  ( LSubSp ‘ 𝑊 )  ∧  𝑆  ⊆  𝑥 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 10 | 2 9 | issubassa2 | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑥  ∈  ( SubRing ‘ 𝑊 ) )  →  ( 𝑥  ∈  ( LSubSp ‘ 𝑊 )  ↔  ran  𝐶  ⊆  𝑥 ) ) | 
						
							| 11 | 10 | anbi1d | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑥  ∈  ( SubRing ‘ 𝑊 ) )  →  ( ( 𝑥  ∈  ( LSubSp ‘ 𝑊 )  ∧  𝑆  ⊆  𝑥 )  ↔  ( ran  𝐶  ⊆  𝑥  ∧  𝑆  ⊆  𝑥 ) ) ) | 
						
							| 12 |  | unss | ⊢ ( ( ran  𝐶  ⊆  𝑥  ∧  𝑆  ⊆  𝑥 )  ↔  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑥 ) | 
						
							| 13 | 11 12 | bitrdi | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑥  ∈  ( SubRing ‘ 𝑊 ) )  →  ( ( 𝑥  ∈  ( LSubSp ‘ 𝑊 )  ∧  𝑆  ⊆  𝑥 )  ↔  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑥 ) ) | 
						
							| 14 | 13 | pm5.32da | ⊢ ( 𝑊  ∈  AssAlg  →  ( ( 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∧  ( 𝑥  ∈  ( LSubSp ‘ 𝑊 )  ∧  𝑆  ⊆  𝑥 ) )  ↔  ( 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∧  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑥 ) ) ) | 
						
							| 15 | 8 14 | bitrid | ⊢ ( 𝑊  ∈  AssAlg  →  ( ( 𝑥  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∧  𝑆  ⊆  𝑥 )  ↔  ( 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∧  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑥 ) ) ) | 
						
							| 16 | 15 | abbidv | ⊢ ( 𝑊  ∈  AssAlg  →  { 𝑥  ∣  ( 𝑥  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∧  𝑆  ⊆  𝑥 ) }  =  { 𝑥  ∣  ( 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∧  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑥 ) } ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  { 𝑥  ∣  ( 𝑥  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∧  𝑆  ⊆  𝑥 ) }  =  { 𝑥  ∣  ( 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∧  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑥 ) } ) | 
						
							| 18 |  | df-rab | ⊢ { 𝑥  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑥 }  =  { 𝑥  ∣  ( 𝑥  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∧  𝑆  ⊆  𝑥 ) } | 
						
							| 19 |  | df-rab | ⊢ { 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∣  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑥 }  =  { 𝑥  ∣  ( 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∧  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑥 ) } | 
						
							| 20 | 17 18 19 | 3eqtr4g | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  { 𝑥  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑥 }  =  { 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∣  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑥 } ) | 
						
							| 21 | 20 | inteqd | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ∩  { 𝑥  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑥 }  =  ∩  { 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∣  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑥 } ) | 
						
							| 22 | 1 4 9 | aspval | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ( 𝐴 ‘ 𝑆 )  =  ∩  { 𝑥  ∈  ( ( SubRing ‘ 𝑊 )  ∩  ( LSubSp ‘ 𝑊 ) )  ∣  𝑆  ⊆  𝑥 } ) | 
						
							| 23 |  | assaring | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  Ring ) | 
						
							| 24 | 4 | subrgmre | ⊢ ( 𝑊  ∈  Ring  →  ( SubRing ‘ 𝑊 )  ∈  ( Moore ‘ 𝑉 ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝑊  ∈  AssAlg  →  ( SubRing ‘ 𝑊 )  ∈  ( Moore ‘ 𝑉 ) ) | 
						
							| 26 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 27 |  | assalmod | ⊢ ( 𝑊  ∈  AssAlg  →  𝑊  ∈  LMod ) | 
						
							| 28 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 29 | 2 26 23 27 28 4 | asclf | ⊢ ( 𝑊  ∈  AssAlg  →  𝐶 : ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⟶ 𝑉 ) | 
						
							| 30 | 29 | frnd | ⊢ ( 𝑊  ∈  AssAlg  →  ran  𝐶  ⊆  𝑉 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ran  𝐶  ⊆  𝑉 ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  𝑉 ) | 
						
							| 33 | 31 32 | unssd | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑉 ) | 
						
							| 34 | 3 | mrcval | ⊢ ( ( ( SubRing ‘ 𝑊 )  ∈  ( Moore ‘ 𝑉 )  ∧  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑉 )  →  ( 𝑅 ‘ ( ran  𝐶  ∪  𝑆 ) )  =  ∩  { 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∣  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑥 } ) | 
						
							| 35 | 25 33 34 | syl2an2r | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ( 𝑅 ‘ ( ran  𝐶  ∪  𝑆 ) )  =  ∩  { 𝑥  ∈  ( SubRing ‘ 𝑊 )  ∣  ( ran  𝐶  ∪  𝑆 )  ⊆  𝑥 } ) | 
						
							| 36 | 21 22 35 | 3eqtr4d | ⊢ ( ( 𝑊  ∈  AssAlg  ∧  𝑆  ⊆  𝑉 )  →  ( 𝐴 ‘ 𝑆 )  =  ( 𝑅 ‘ ( ran  𝐶  ∪  𝑆 ) ) ) |