Metamath Proof Explorer
Description: Left-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)
|
|
Ref |
Expression |
|
Hypotheses |
isassa.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
isassa.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
isassa.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
|
|
isassa.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
|
|
isassa.t |
⊢ × = ( .r ‘ 𝑊 ) |
|
Assertion |
assaass |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
isassa.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
isassa.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
isassa.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
4 |
|
isassa.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
isassa.t |
⊢ × = ( .r ‘ 𝑊 ) |
6 |
1 2 3 4 5
|
assalem |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) |
7 |
6
|
simpld |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |