Step |
Hyp |
Ref |
Expression |
1 |
|
isassa.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
isassa.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
isassa.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
4 |
|
isassa.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
isassa.t |
⊢ × = ( .r ‘ 𝑊 ) |
6 |
1 2 3 4 5
|
isassa |
⊢ ( 𝑊 ∈ AssAlg ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing ) ∧ ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) ) |
7 |
6
|
simprbi |
⊢ ( 𝑊 ∈ AssAlg → ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ) |
8 |
|
oveq1 |
⊢ ( 𝑟 = 𝐴 → ( 𝑟 · 𝑥 ) = ( 𝐴 · 𝑥 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝑟 = 𝐴 → ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( ( 𝐴 · 𝑥 ) × 𝑦 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑟 = 𝐴 → ( 𝑟 · ( 𝑥 × 𝑦 ) ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑟 = 𝐴 → ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ↔ ( ( 𝐴 · 𝑥 ) × 𝑦 ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ) ) |
12 |
|
oveq1 |
⊢ ( 𝑟 = 𝐴 → ( 𝑟 · 𝑦 ) = ( 𝐴 · 𝑦 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑟 = 𝐴 → ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑥 × ( 𝐴 · 𝑦 ) ) ) |
14 |
13 10
|
eqeq12d |
⊢ ( 𝑟 = 𝐴 → ( ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ↔ ( 𝑥 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ) ) |
15 |
11 14
|
anbi12d |
⊢ ( 𝑟 = 𝐴 → ( ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) ↔ ( ( ( 𝐴 · 𝑥 ) × 𝑦 ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑋 ) ) |
17 |
16
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐴 · 𝑥 ) × 𝑦 ) = ( ( 𝐴 · 𝑋 ) × 𝑦 ) ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 × 𝑦 ) = ( 𝑋 × 𝑦 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐴 · ( 𝑥 × 𝑦 ) ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ) |
20 |
17 19
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐴 · 𝑥 ) × 𝑦 ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ↔ ( ( 𝐴 · 𝑋 ) × 𝑦 ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ) ) |
21 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 × ( 𝐴 · 𝑦 ) ) = ( 𝑋 × ( 𝐴 · 𝑦 ) ) ) |
22 |
21 19
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ↔ ( 𝑋 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( ( 𝐴 · 𝑥 ) × 𝑦 ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑥 × 𝑦 ) ) ) ↔ ( ( ( 𝐴 · 𝑋 ) × 𝑦 ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐴 · 𝑋 ) × 𝑦 ) = ( ( 𝐴 · 𝑋 ) × 𝑌 ) ) |
25 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 × 𝑦 ) = ( 𝑋 × 𝑌 ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝐴 · ( 𝑋 × 𝑦 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) |
27 |
24 26
|
eqeq12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝐴 · 𝑋 ) × 𝑦 ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ↔ ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) |
28 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑌 ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 × ( 𝐴 · 𝑦 ) ) = ( 𝑋 × ( 𝐴 · 𝑌 ) ) ) |
30 |
29 26
|
eqeq12d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ↔ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) |
31 |
27 30
|
anbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( ( 𝐴 · 𝑋 ) × 𝑦 ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑦 ) ) = ( 𝐴 · ( 𝑋 × 𝑦 ) ) ) ↔ ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) ) |
32 |
15 23 31
|
rspc3v |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑟 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ∀ 𝑦 ∈ 𝑉 ( ( ( 𝑟 · 𝑥 ) × 𝑦 ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ∧ ( 𝑥 × ( 𝑟 · 𝑦 ) ) = ( 𝑟 · ( 𝑥 × 𝑦 ) ) ) → ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) ) |
33 |
7 32
|
mpan9 |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝐴 · 𝑋 ) × 𝑌 ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ∧ ( 𝑋 × ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 × 𝑌 ) ) ) ) |