| Step |
Hyp |
Ref |
Expression |
| 1 |
|
assamulgscm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
assamulgscm.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
assamulgscm.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 4 |
|
assamulgscm.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
|
assamulgscm.g |
⊢ 𝐺 = ( mulGrp ‘ 𝐹 ) |
| 6 |
|
assamulgscm.p |
⊢ ↑ = ( .g ‘ 𝐺 ) |
| 7 |
|
assamulgscm.h |
⊢ 𝐻 = ( mulGrp ‘ 𝑊 ) |
| 8 |
|
assamulgscm.e |
⊢ 𝐸 = ( .g ‘ 𝐻 ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( 0 𝐸 ( 𝐴 · 𝑋 ) ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 𝐴 ) = ( 0 ↑ 𝐴 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 𝐸 𝑋 ) = ( 0 𝐸 𝑋 ) ) |
| 12 |
10 11
|
oveq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) = ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) ) |
| 13 |
9 12
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ↔ ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ) ↔ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) ) ) ) |
| 15 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ) |
| 16 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 𝐴 ) = ( 𝑦 ↑ 𝐴 ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐸 𝑋 ) = ( 𝑦 𝐸 𝑋 ) ) |
| 18 |
16 17
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) |
| 19 |
15 18
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ↔ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ) ↔ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) ) ) |
| 21 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) ) |
| 22 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 ↑ 𝐴 ) = ( ( 𝑦 + 1 ) ↑ 𝐴 ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 𝐸 𝑋 ) = ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) |
| 24 |
22 23
|
oveq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 25 |
21 24
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ↔ ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) |
| 26 |
25
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ) ↔ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) ) |
| 27 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) ) |
| 28 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 ↑ 𝐴 ) = ( 𝑁 ↑ 𝐴 ) ) |
| 29 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 𝐸 𝑋 ) = ( 𝑁 𝐸 𝑋 ) ) |
| 30 |
28 29
|
oveq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) |
| 31 |
27 30
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ↔ ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) ) |
| 32 |
31
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑥 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑥 ↑ 𝐴 ) · ( 𝑥 𝐸 𝑋 ) ) ) ↔ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) ) ) |
| 33 |
1 2 3 4 5 6 7 8
|
assamulgscmlem1 |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) ) |
| 34 |
1 2 3 4 5 6 7 8
|
assamulgscmlem2 |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) ) |
| 35 |
34
|
a2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) ) |
| 36 |
14 20 26 32 33 35
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) ) |
| 37 |
36
|
exp4c |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ 𝐵 → ( 𝑋 ∈ 𝑉 → ( 𝑊 ∈ AssAlg → ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) ) ) ) |
| 38 |
37
|
3imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ∈ AssAlg → ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) ) |
| 39 |
38
|
impcom |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑁 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑁 ↑ 𝐴 ) · ( 𝑁 𝐸 𝑋 ) ) ) |