Metamath Proof Explorer


Theorem assamulgscmlem1

Description: Lemma 1 for assamulgscm (induction base). (Contributed by AV, 26-Aug-2019)

Ref Expression
Hypotheses assamulgscm.v 𝑉 = ( Base ‘ 𝑊 )
assamulgscm.f 𝐹 = ( Scalar ‘ 𝑊 )
assamulgscm.b 𝐵 = ( Base ‘ 𝐹 )
assamulgscm.s · = ( ·𝑠𝑊 )
assamulgscm.g 𝐺 = ( mulGrp ‘ 𝐹 )
assamulgscm.p = ( .g𝐺 )
assamulgscm.h 𝐻 = ( mulGrp ‘ 𝑊 )
assamulgscm.e 𝐸 = ( .g𝐻 )
Assertion assamulgscmlem1 ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 0 𝐴 ) · ( 0 𝐸 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 assamulgscm.v 𝑉 = ( Base ‘ 𝑊 )
2 assamulgscm.f 𝐹 = ( Scalar ‘ 𝑊 )
3 assamulgscm.b 𝐵 = ( Base ‘ 𝐹 )
4 assamulgscm.s · = ( ·𝑠𝑊 )
5 assamulgscm.g 𝐺 = ( mulGrp ‘ 𝐹 )
6 assamulgscm.p = ( .g𝐺 )
7 assamulgscm.h 𝐻 = ( mulGrp ‘ 𝑊 )
8 assamulgscm.e 𝐸 = ( .g𝐻 )
9 assalmod ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod )
10 assaring ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring )
11 eqid ( 1r𝑊 ) = ( 1r𝑊 )
12 1 11 ringidcl ( 𝑊 ∈ Ring → ( 1r𝑊 ) ∈ 𝑉 )
13 10 12 syl ( 𝑊 ∈ AssAlg → ( 1r𝑊 ) ∈ 𝑉 )
14 eqid ( 1r𝐹 ) = ( 1r𝐹 )
15 1 2 4 14 lmodvs1 ( ( 𝑊 ∈ LMod ∧ ( 1r𝑊 ) ∈ 𝑉 ) → ( ( 1r𝐹 ) · ( 1r𝑊 ) ) = ( 1r𝑊 ) )
16 15 eqcomd ( ( 𝑊 ∈ LMod ∧ ( 1r𝑊 ) ∈ 𝑉 ) → ( 1r𝑊 ) = ( ( 1r𝐹 ) · ( 1r𝑊 ) ) )
17 9 13 16 syl2anc ( 𝑊 ∈ AssAlg → ( 1r𝑊 ) = ( ( 1r𝐹 ) · ( 1r𝑊 ) ) )
18 17 adantl ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 1r𝑊 ) = ( ( 1r𝐹 ) · ( 1r𝑊 ) ) )
19 9 adantl ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑊 ∈ LMod )
20 simpll ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐴𝐵 )
21 simplr ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑋𝑉 )
22 1 2 4 3 lmodvscl ( ( 𝑊 ∈ LMod ∧ 𝐴𝐵𝑋𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 )
23 19 20 21 22 syl3anc ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 )
24 7 1 mgpbas 𝑉 = ( Base ‘ 𝐻 )
25 7 11 ringidval ( 1r𝑊 ) = ( 0g𝐻 )
26 24 25 8 mulg0 ( ( 𝐴 · 𝑋 ) ∈ 𝑉 → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( 1r𝑊 ) )
27 23 26 syl ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( 1r𝑊 ) )
28 5 3 mgpbas 𝐵 = ( Base ‘ 𝐺 )
29 5 14 ringidval ( 1r𝐹 ) = ( 0g𝐺 )
30 28 29 6 mulg0 ( 𝐴𝐵 → ( 0 𝐴 ) = ( 1r𝐹 ) )
31 20 30 syl ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐴 ) = ( 1r𝐹 ) )
32 24 25 8 mulg0 ( 𝑋𝑉 → ( 0 𝐸 𝑋 ) = ( 1r𝑊 ) )
33 21 32 syl ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 𝑋 ) = ( 1r𝑊 ) )
34 31 33 oveq12d ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 0 𝐴 ) · ( 0 𝐸 𝑋 ) ) = ( ( 1r𝐹 ) · ( 1r𝑊 ) ) )
35 18 27 34 3eqtr4d ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 0 𝐴 ) · ( 0 𝐸 𝑋 ) ) )