Step |
Hyp |
Ref |
Expression |
1 |
|
assamulgscm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
assamulgscm.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
assamulgscm.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
4 |
|
assamulgscm.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
assamulgscm.g |
⊢ 𝐺 = ( mulGrp ‘ 𝐹 ) |
6 |
|
assamulgscm.p |
⊢ ↑ = ( .g ‘ 𝐺 ) |
7 |
|
assamulgscm.h |
⊢ 𝐻 = ( mulGrp ‘ 𝑊 ) |
8 |
|
assamulgscm.e |
⊢ 𝐸 = ( .g ‘ 𝐻 ) |
9 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
10 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
12 |
1 11
|
ringidcl |
⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ 𝑉 ) |
13 |
10 12
|
syl |
⊢ ( 𝑊 ∈ AssAlg → ( 1r ‘ 𝑊 ) ∈ 𝑉 ) |
14 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
15 |
1 2 4 14
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ 𝑊 ) ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝑊 ) ) = ( 1r ‘ 𝑊 ) ) |
16 |
15
|
eqcomd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ 𝑊 ) ∈ 𝑉 ) → ( 1r ‘ 𝑊 ) = ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝑊 ) ) ) |
17 |
9 13 16
|
syl2anc |
⊢ ( 𝑊 ∈ AssAlg → ( 1r ‘ 𝑊 ) = ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝑊 ) ) ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 1r ‘ 𝑊 ) = ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝑊 ) ) ) |
19 |
9
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑊 ∈ LMod ) |
20 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐴 ∈ 𝐵 ) |
21 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑋 ∈ 𝑉 ) |
22 |
1 2 4 3
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
23 |
19 20 21 22
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
24 |
7 1
|
mgpbas |
⊢ 𝑉 = ( Base ‘ 𝐻 ) |
25 |
7 11
|
ringidval |
⊢ ( 1r ‘ 𝑊 ) = ( 0g ‘ 𝐻 ) |
26 |
24 25 8
|
mulg0 |
⊢ ( ( 𝐴 · 𝑋 ) ∈ 𝑉 → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( 1r ‘ 𝑊 ) ) |
27 |
23 26
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( 1r ‘ 𝑊 ) ) |
28 |
5 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
29 |
5 14
|
ringidval |
⊢ ( 1r ‘ 𝐹 ) = ( 0g ‘ 𝐺 ) |
30 |
28 29 6
|
mulg0 |
⊢ ( 𝐴 ∈ 𝐵 → ( 0 ↑ 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
31 |
20 30
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 ↑ 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
32 |
24 25 8
|
mulg0 |
⊢ ( 𝑋 ∈ 𝑉 → ( 0 𝐸 𝑋 ) = ( 1r ‘ 𝑊 ) ) |
33 |
21 32
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 𝑋 ) = ( 1r ‘ 𝑊 ) ) |
34 |
31 33
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) = ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝑊 ) ) ) |
35 |
18 27 34
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) ) |