| Step |
Hyp |
Ref |
Expression |
| 1 |
|
assamulgscm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
assamulgscm.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
assamulgscm.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 4 |
|
assamulgscm.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
|
assamulgscm.g |
⊢ 𝐺 = ( mulGrp ‘ 𝐹 ) |
| 6 |
|
assamulgscm.p |
⊢ ↑ = ( .g ‘ 𝐺 ) |
| 7 |
|
assamulgscm.h |
⊢ 𝐻 = ( mulGrp ‘ 𝑊 ) |
| 8 |
|
assamulgscm.e |
⊢ 𝐸 = ( .g ‘ 𝐻 ) |
| 9 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
| 10 |
7
|
ringmgp |
⊢ ( 𝑊 ∈ Ring → 𝐻 ∈ Mnd ) |
| 11 |
9 10
|
syl |
⊢ ( 𝑊 ∈ AssAlg → 𝐻 ∈ Mnd ) |
| 12 |
11
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐻 ∈ Mnd ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐻 ∈ Mnd ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → 𝐻 ∈ Mnd ) |
| 15 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → 𝑦 ∈ ℕ0 ) |
| 16 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑊 ∈ LMod ) |
| 18 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐴 ∈ 𝐵 ) |
| 19 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑋 ∈ 𝑉 ) |
| 20 |
1 2 4 3
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 21 |
17 18 19 20
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 23 |
22
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 24 |
7 1
|
mgpbas |
⊢ 𝑉 = ( Base ‘ 𝐻 ) |
| 25 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
| 26 |
7 25
|
mgpplusg |
⊢ ( .r ‘ 𝑊 ) = ( +g ‘ 𝐻 ) |
| 27 |
24 8 26
|
mulgnn0p1 |
⊢ ( ( 𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) |
| 28 |
14 15 23 27
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) |
| 29 |
|
oveq1 |
⊢ ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) |
| 30 |
|
simprr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑊 ∈ AssAlg ) |
| 31 |
2
|
eqcomi |
⊢ ( Scalar ‘ 𝑊 ) = 𝐹 |
| 32 |
31
|
fveq2i |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ 𝐹 ) |
| 33 |
5 32
|
mgpbas |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ 𝐺 ) |
| 34 |
2
|
assasca |
⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |
| 35 |
5
|
ringmgp |
⊢ ( 𝐹 ∈ Ring → 𝐺 ∈ Mnd ) |
| 36 |
34 35
|
syl |
⊢ ( 𝑊 ∈ AssAlg → 𝐺 ∈ Mnd ) |
| 37 |
36
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐺 ∈ Mnd ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐺 ∈ Mnd ) |
| 39 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑦 ∈ ℕ0 ) |
| 40 |
3
|
a1i |
⊢ ( 𝑊 ∈ AssAlg → 𝐵 = ( Base ‘ 𝐹 ) ) |
| 41 |
2
|
fveq2i |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 42 |
40 41
|
eqtrdi |
⊢ ( 𝑊 ∈ AssAlg → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 43 |
42
|
eleq2d |
⊢ ( 𝑊 ∈ AssAlg → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 44 |
43
|
biimpcd |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 46 |
45
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 48 |
33 6 38 39 47
|
mulgnn0cld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 49 |
|
simprlr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑋 ∈ 𝑉 ) |
| 50 |
24 8 13 39 49
|
mulgnn0cld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝑦 𝐸 𝑋 ) ∈ 𝑉 ) |
| 51 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 52 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 53 |
1 51 52 4 25
|
assaass |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑦 𝐸 𝑋 ) ∈ 𝑉 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ) ) → ( ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) ) |
| 54 |
30 48 50 22 53
|
syl13anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) ) |
| 55 |
1 51 52 4 25
|
assaassr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑦 𝐸 𝑋 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) |
| 56 |
30 47 50 49 55
|
syl13anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) |
| 57 |
56
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) ) |
| 58 |
24 8 26
|
mulgnn0p1 |
⊢ ( ( 𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) = ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) |
| 59 |
13 39 49 58
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) = ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) |
| 60 |
59
|
eqcomd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) = ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) |
| 61 |
60
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) = ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 62 |
61
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) |
| 63 |
17
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑊 ∈ LMod ) |
| 64 |
|
peano2nn0 |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 66 |
24 8 13 65 49
|
mulgnn0cld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 ) |
| 67 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
| 68 |
1 51 4 52 67
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 ) ) → ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) |
| 69 |
68
|
eqcomd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) = ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 70 |
63 48 47 66 69
|
syl13anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) = ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 71 |
57 62 70
|
3eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) = ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 72 |
|
simprll |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐴 ∈ 𝐵 ) |
| 73 |
5 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 74 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 75 |
5 74
|
mgpplusg |
⊢ ( .r ‘ 𝐹 ) = ( +g ‘ 𝐺 ) |
| 76 |
73 6 75
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) ↑ 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) ) |
| 77 |
38 39 72 76
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) ↑ 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) ) |
| 78 |
2
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
| 79 |
78
|
fveq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( .r ‘ 𝐹 ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 80 |
79
|
oveqd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) ) |
| 81 |
77 80
|
eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) ↑ 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) ) |
| 82 |
81
|
eqcomd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) = ( ( 𝑦 + 1 ) ↑ 𝐴 ) ) |
| 83 |
82
|
oveq1d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 84 |
54 71 83
|
3eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 85 |
29 84
|
sylan9eqr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 86 |
28 85
|
eqtrd |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
| 87 |
86
|
exp31 |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) ) |