Step |
Hyp |
Ref |
Expression |
1 |
|
assamulgscm.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
assamulgscm.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
assamulgscm.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
4 |
|
assamulgscm.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
assamulgscm.g |
⊢ 𝐺 = ( mulGrp ‘ 𝐹 ) |
6 |
|
assamulgscm.p |
⊢ ↑ = ( .g ‘ 𝐺 ) |
7 |
|
assamulgscm.h |
⊢ 𝐻 = ( mulGrp ‘ 𝑊 ) |
8 |
|
assamulgscm.e |
⊢ 𝐸 = ( .g ‘ 𝐻 ) |
9 |
|
assaring |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |
10 |
7
|
ringmgp |
⊢ ( 𝑊 ∈ Ring → 𝐻 ∈ Mnd ) |
11 |
9 10
|
syl |
⊢ ( 𝑊 ∈ AssAlg → 𝐻 ∈ Mnd ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐻 ∈ Mnd ) |
13 |
12
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐻 ∈ Mnd ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → 𝐻 ∈ Mnd ) |
15 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → 𝑦 ∈ ℕ0 ) |
16 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑊 ∈ LMod ) |
18 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐴 ∈ 𝐵 ) |
19 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑋 ∈ 𝑉 ) |
20 |
1 2 4 3
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
21 |
17 18 19 20
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
22 |
21
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
24 |
7 1
|
mgpbas |
⊢ 𝑉 = ( Base ‘ 𝐻 ) |
25 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
26 |
7 25
|
mgpplusg |
⊢ ( .r ‘ 𝑊 ) = ( +g ‘ 𝐻 ) |
27 |
24 8 26
|
mulgnn0p1 |
⊢ ( ( 𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) |
28 |
14 15 23 27
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) |
29 |
|
oveq1 |
⊢ ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) |
30 |
|
simprr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑊 ∈ AssAlg ) |
31 |
2
|
assasca |
⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ CRing ) |
32 |
|
crngring |
⊢ ( 𝐹 ∈ CRing → 𝐹 ∈ Ring ) |
33 |
5
|
ringmgp |
⊢ ( 𝐹 ∈ Ring → 𝐺 ∈ Mnd ) |
34 |
31 32 33
|
3syl |
⊢ ( 𝑊 ∈ AssAlg → 𝐺 ∈ Mnd ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐺 ∈ Mnd ) |
36 |
35
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐺 ∈ Mnd ) |
37 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑦 ∈ ℕ0 ) |
38 |
3
|
a1i |
⊢ ( 𝑊 ∈ AssAlg → 𝐵 = ( Base ‘ 𝐹 ) ) |
39 |
2
|
fveq2i |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
40 |
38 39
|
eqtrdi |
⊢ ( 𝑊 ∈ AssAlg → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
41 |
40
|
eleq2d |
⊢ ( 𝑊 ∈ AssAlg → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
42 |
41
|
biimpcd |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
43 |
42
|
adantr |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
44 |
43
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
45 |
44
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
46 |
2
|
eqcomi |
⊢ ( Scalar ‘ 𝑊 ) = 𝐹 |
47 |
46
|
fveq2i |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ 𝐹 ) |
48 |
5 47
|
mgpbas |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ 𝐺 ) |
49 |
48 6
|
mulgnn0cl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
50 |
36 37 45 49
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
51 |
|
simprlr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑋 ∈ 𝑉 ) |
52 |
24 8
|
mulgnn0cl |
⊢ ( ( 𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑦 𝐸 𝑋 ) ∈ 𝑉 ) |
53 |
13 37 51 52
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝑦 𝐸 𝑋 ) ∈ 𝑉 ) |
54 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
55 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
56 |
1 54 55 4 25
|
assaass |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑦 𝐸 𝑋 ) ∈ 𝑉 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ) ) → ( ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) ) |
57 |
30 50 53 22 56
|
syl13anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) ) |
58 |
1 54 55 4 25
|
assaassr |
⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑦 𝐸 𝑋 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) |
59 |
30 45 53 51 58
|
syl13anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) |
60 |
59
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) ) |
61 |
24 8 26
|
mulgnn0p1 |
⊢ ( ( 𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) = ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) |
62 |
13 37 51 61
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) = ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) |
63 |
62
|
eqcomd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) = ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) |
64 |
63
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) = ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
65 |
64
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) 𝑋 ) ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) |
66 |
17
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑊 ∈ LMod ) |
67 |
|
peano2nn0 |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ0 ) |
68 |
67
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
69 |
24 8
|
mulgnn0cl |
⊢ ( ( 𝐻 ∈ Mnd ∧ ( 𝑦 + 1 ) ∈ ℕ0 ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 ) |
70 |
13 68 51 69
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 ) |
71 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
72 |
1 54 4 55 71
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 ) ) → ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) |
73 |
72
|
eqcomd |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑦 ↑ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) = ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
74 |
66 50 45 70 73
|
syl13anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) = ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
75 |
60 65 74
|
3eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) ) = ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
76 |
|
simprll |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐴 ∈ 𝐵 ) |
77 |
5 3
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
78 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
79 |
5 78
|
mgpplusg |
⊢ ( .r ‘ 𝐹 ) = ( +g ‘ 𝐺 ) |
80 |
77 6 79
|
mulgnn0p1 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) ↑ 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) ) |
81 |
36 37 76 80
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) ↑ 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) ) |
82 |
2
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐹 = ( Scalar ‘ 𝑊 ) ) |
83 |
82
|
fveq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( .r ‘ 𝐹 ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
84 |
83
|
oveqd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ 𝐹 ) 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) ) |
85 |
81 84
|
eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) ↑ 𝐴 ) = ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) ) |
86 |
85
|
eqcomd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) = ( ( 𝑦 + 1 ) ↑ 𝐴 ) ) |
87 |
86
|
oveq1d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( ( 𝑦 ↑ 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
88 |
57 75 87
|
3eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
89 |
29 88
|
sylan9eqr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r ‘ 𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
90 |
28 89
|
eqtrd |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) |
91 |
90
|
exp31 |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 ↑ 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) ↑ 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) ) |