Metamath Proof Explorer


Theorem assamulgscmlem2

Description: Lemma for assamulgscm (induction step). (Contributed by AV, 26-Aug-2019)

Ref Expression
Hypotheses assamulgscm.v 𝑉 = ( Base ‘ 𝑊 )
assamulgscm.f 𝐹 = ( Scalar ‘ 𝑊 )
assamulgscm.b 𝐵 = ( Base ‘ 𝐹 )
assamulgscm.s · = ( ·𝑠𝑊 )
assamulgscm.g 𝐺 = ( mulGrp ‘ 𝐹 )
assamulgscm.p = ( .g𝐺 )
assamulgscm.h 𝐻 = ( mulGrp ‘ 𝑊 )
assamulgscm.e 𝐸 = ( .g𝐻 )
Assertion assamulgscmlem2 ( 𝑦 ∈ ℕ0 → ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 assamulgscm.v 𝑉 = ( Base ‘ 𝑊 )
2 assamulgscm.f 𝐹 = ( Scalar ‘ 𝑊 )
3 assamulgscm.b 𝐵 = ( Base ‘ 𝐹 )
4 assamulgscm.s · = ( ·𝑠𝑊 )
5 assamulgscm.g 𝐺 = ( mulGrp ‘ 𝐹 )
6 assamulgscm.p = ( .g𝐺 )
7 assamulgscm.h 𝐻 = ( mulGrp ‘ 𝑊 )
8 assamulgscm.e 𝐸 = ( .g𝐻 )
9 assaring ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring )
10 7 ringmgp ( 𝑊 ∈ Ring → 𝐻 ∈ Mnd )
11 9 10 syl ( 𝑊 ∈ AssAlg → 𝐻 ∈ Mnd )
12 11 adantl ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐻 ∈ Mnd )
13 12 adantl ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐻 ∈ Mnd )
14 13 adantr ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → 𝐻 ∈ Mnd )
15 simpll ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → 𝑦 ∈ ℕ0 )
16 assalmod ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod )
17 16 adantl ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑊 ∈ LMod )
18 simpll ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐴𝐵 )
19 simplr ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑋𝑉 )
20 1 2 4 3 lmodvscl ( ( 𝑊 ∈ LMod ∧ 𝐴𝐵𝑋𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 )
21 17 18 19 20 syl3anc ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 )
22 21 adantl ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 )
23 22 adantr ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 )
24 7 1 mgpbas 𝑉 = ( Base ‘ 𝐻 )
25 eqid ( .r𝑊 ) = ( .r𝑊 )
26 7 25 mgpplusg ( .r𝑊 ) = ( +g𝐻 )
27 24 8 26 mulgnn0p1 ( ( 𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) )
28 14 15 23 27 syl3anc ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) )
29 oveq1 ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) )
30 simprr ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑊 ∈ AssAlg )
31 2 eqcomi ( Scalar ‘ 𝑊 ) = 𝐹
32 31 fveq2i ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ 𝐹 )
33 5 32 mgpbas ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ 𝐺 )
34 2 assasca ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring )
35 5 ringmgp ( 𝐹 ∈ Ring → 𝐺 ∈ Mnd )
36 34 35 syl ( 𝑊 ∈ AssAlg → 𝐺 ∈ Mnd )
37 36 adantl ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐺 ∈ Mnd )
38 37 adantl ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐺 ∈ Mnd )
39 simpl ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑦 ∈ ℕ0 )
40 3 a1i ( 𝑊 ∈ AssAlg → 𝐵 = ( Base ‘ 𝐹 ) )
41 2 fveq2i ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
42 40 41 eqtrdi ( 𝑊 ∈ AssAlg → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
43 42 eleq2d ( 𝑊 ∈ AssAlg → ( 𝐴𝐵𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
44 43 biimpcd ( 𝐴𝐵 → ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
45 44 adantr ( ( 𝐴𝐵𝑋𝑉 ) → ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
46 45 imp ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
47 46 adantl ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
48 33 6 38 39 47 mulgnn0cld ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝑦 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
49 simprlr ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑋𝑉 )
50 24 8 13 39 49 mulgnn0cld ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝑦 𝐸 𝑋 ) ∈ 𝑉 )
51 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
52 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
53 1 51 52 4 25 assaass ( ( 𝑊 ∈ AssAlg ∧ ( ( 𝑦 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑦 𝐸 𝑋 ) ∈ 𝑉 ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ) ) → ( ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) ) )
54 30 48 50 22 53 syl13anc ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) ) )
55 1 51 52 4 25 assaassr ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝑦 𝐸 𝑋 ) ∈ 𝑉𝑋𝑉 ) ) → ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) = ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) 𝑋 ) ) )
56 30 47 50 49 55 syl13anc ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) = ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) 𝑋 ) ) )
57 56 oveq2d ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) ) = ( ( 𝑦 𝐴 ) · ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) 𝑋 ) ) ) )
58 24 8 26 mulgnn0p1 ( ( 𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉 ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) = ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) 𝑋 ) )
59 13 39 49 58 syl3anc ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) = ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) 𝑋 ) )
60 59 eqcomd ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) 𝑋 ) = ( ( 𝑦 + 1 ) 𝐸 𝑋 ) )
61 60 oveq2d ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) 𝑋 ) ) = ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) )
62 61 oveq2d ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐴 ) · ( 𝐴 · ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) 𝑋 ) ) ) = ( ( 𝑦 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) )
63 17 adantl ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝑊 ∈ LMod )
64 peano2nn0 ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ0 )
65 64 adantr ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( 𝑦 + 1 ) ∈ ℕ0 )
66 24 8 13 65 49 mulgnn0cld ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 )
67 eqid ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) )
68 1 51 4 52 67 lmodvsass ( ( 𝑊 ∈ LMod ∧ ( ( 𝑦 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 ) ) → ( ( ( 𝑦 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) = ( ( 𝑦 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) )
69 68 eqcomd ( ( 𝑊 ∈ LMod ∧ ( ( 𝑦 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ∈ 𝑉 ) ) → ( ( 𝑦 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) = ( ( ( 𝑦 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) )
70 63 48 47 66 69 syl13anc ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐴 ) · ( 𝐴 · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) = ( ( ( 𝑦 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) )
71 57 62 70 3eqtrd ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐴 ) · ( ( 𝑦 𝐸 𝑋 ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) ) = ( ( ( 𝑦 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) )
72 simprll ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐴𝐵 )
73 5 3 mgpbas 𝐵 = ( Base ‘ 𝐺 )
74 eqid ( .r𝐹 ) = ( .r𝐹 )
75 5 74 mgpplusg ( .r𝐹 ) = ( +g𝐺 )
76 73 6 75 mulgnn0p1 ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴𝐵 ) → ( ( 𝑦 + 1 ) 𝐴 ) = ( ( 𝑦 𝐴 ) ( .r𝐹 ) 𝐴 ) )
77 38 39 72 76 syl3anc ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) 𝐴 ) = ( ( 𝑦 𝐴 ) ( .r𝐹 ) 𝐴 ) )
78 2 a1i ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → 𝐹 = ( Scalar ‘ 𝑊 ) )
79 78 fveq2d ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( .r𝐹 ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) )
80 79 oveqd ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐴 ) ( .r𝐹 ) 𝐴 ) = ( ( 𝑦 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) )
81 77 80 eqtrd ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 + 1 ) 𝐴 ) = ( ( 𝑦 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) )
82 81 eqcomd ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( 𝑦 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) = ( ( 𝑦 + 1 ) 𝐴 ) )
83 82 oveq1d ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( ( 𝑦 𝐴 ) ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) )
84 54 71 83 3eqtrd ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) → ( ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) )
85 29 84 sylan9eqr ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) ( .r𝑊 ) ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) )
86 28 85 eqtrd ( ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) ) ∧ ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) )
87 86 exp31 ( 𝑦 ∈ ℕ0 → ( ( ( 𝐴𝐵𝑋𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 𝑦 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 𝑦 𝐴 ) · ( 𝑦 𝐸 𝑋 ) ) → ( ( 𝑦 + 1 ) 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( ( 𝑦 + 1 ) 𝐴 ) · ( ( 𝑦 + 1 ) 𝐸 𝑋 ) ) ) ) )