Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
2 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
4 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
6 |
1 2 3 4 5
|
isassa |
⊢ ( 𝑊 ∈ AssAlg ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ ( Scalar ‘ 𝑊 ) ∈ CRing ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑧 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑧 ( ·𝑠 ‘ 𝑊 ) ( 𝑥 ( .r ‘ 𝑊 ) 𝑦 ) ) ) ) ) |
7 |
6
|
simplbi |
⊢ ( 𝑊 ∈ AssAlg → ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ ( Scalar ‘ 𝑊 ) ∈ CRing ) ) |
8 |
7
|
simp2d |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) |