Metamath Proof Explorer


Theorem assasca

Description: The scalars of an associative algebra form a ring. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by SN, 2-Mar-2025)

Ref Expression
Hypothesis assasca.f 𝐹 = ( Scalar ‘ 𝑊 )
Assertion assasca ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring )

Proof

Step Hyp Ref Expression
1 assasca.f 𝐹 = ( Scalar ‘ 𝑊 )
2 assalmod ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod )
3 1 lmodring ( 𝑊 ∈ LMod → 𝐹 ∈ Ring )
4 2 3 syl ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring )