Metamath Proof Explorer
Description: The scalars of an associative algebra form a ring. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by SN, 2-Mar-2025)
|
|
Ref |
Expression |
|
Hypothesis |
assasca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
Assertion |
assasca |
⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
assasca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
assalmod |
⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) |
3 |
1
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
4 |
2 3
|
syl |
⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |