Metamath Proof Explorer


Theorem assasca

Description: An associative algebra's scalar field is a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypothesis assasca.f 𝐹 = ( Scalar ‘ 𝑊 )
Assertion assasca ( 𝑊 ∈ AssAlg → 𝐹 ∈ CRing )

Proof

Step Hyp Ref Expression
1 assasca.f 𝐹 = ( Scalar ‘ 𝑊 )
2 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
3 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
4 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
5 eqid ( .r𝑊 ) = ( .r𝑊 )
6 2 1 3 4 5 isassa ( 𝑊 ∈ AssAlg ↔ ( ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑧 ( ·𝑠𝑊 ) 𝑥 ) ( .r𝑊 ) 𝑦 ) = ( 𝑧 ( ·𝑠𝑊 ) ( 𝑥 ( .r𝑊 ) 𝑦 ) ) ∧ ( 𝑥 ( .r𝑊 ) ( 𝑧 ( ·𝑠𝑊 ) 𝑦 ) ) = ( 𝑧 ( ·𝑠𝑊 ) ( 𝑥 ( .r𝑊 ) 𝑦 ) ) ) ) )
7 6 simplbi ( 𝑊 ∈ AssAlg → ( 𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing ) )
8 7 simp3d ( 𝑊 ∈ AssAlg → 𝐹 ∈ CRing )