Metamath Proof Explorer


Theorem assraddsubd

Description: Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 15-Oct-2018)

Ref Expression
Hypotheses assraddsubd.1 ( 𝜑𝐵 ∈ ℂ )
assraddsubd.2 ( 𝜑𝐶 ∈ ℂ )
assraddsubd.3 ( 𝜑𝐷 ∈ ℂ )
assraddsubd.4 ( 𝜑𝐴 = ( ( 𝐵 + 𝐶 ) − 𝐷 ) )
Assertion assraddsubd ( 𝜑𝐴 = ( 𝐵 + ( 𝐶𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 assraddsubd.1 ( 𝜑𝐵 ∈ ℂ )
2 assraddsubd.2 ( 𝜑𝐶 ∈ ℂ )
3 assraddsubd.3 ( 𝜑𝐷 ∈ ℂ )
4 assraddsubd.4 ( 𝜑𝐴 = ( ( 𝐵 + 𝐶 ) − 𝐷 ) )
5 1 2 3 addsubassd ( 𝜑 → ( ( 𝐵 + 𝐶 ) − 𝐷 ) = ( 𝐵 + ( 𝐶𝐷 ) ) )
6 4 5 eqtrd ( 𝜑𝐴 = ( 𝐵 + ( 𝐶𝐷 ) ) )