Description: Associate RHS addition-subtraction. (Contributed by David A. Wheeler, 15-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | assraddsubd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
assraddsubd.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
assraddsubd.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
assraddsubd.4 | ⊢ ( 𝜑 → 𝐴 = ( ( 𝐵 + 𝐶 ) − 𝐷 ) ) | ||
Assertion | assraddsubd | ⊢ ( 𝜑 → 𝐴 = ( 𝐵 + ( 𝐶 − 𝐷 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | assraddsubd.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
2 | assraddsubd.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
3 | assraddsubd.3 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
4 | assraddsubd.4 | ⊢ ( 𝜑 → 𝐴 = ( ( 𝐵 + 𝐶 ) − 𝐷 ) ) | |
5 | 1 2 3 | addsubassd | ⊢ ( 𝜑 → ( ( 𝐵 + 𝐶 ) − 𝐷 ) = ( 𝐵 + ( 𝐶 − 𝐷 ) ) ) |
6 | 4 5 | eqtrd | ⊢ ( 𝜑 → 𝐴 = ( 𝐵 + ( 𝐶 − 𝐷 ) ) ) |