Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
2 3
|
opeluu |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑦 ∈ ∪ ∪ 𝑅 ) ) |
5 |
1 4
|
sylbi |
⊢ ( 𝑥 𝑅 𝑦 → ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑦 ∈ ∪ ∪ 𝑅 ) ) |
6 |
5
|
simpld |
⊢ ( 𝑥 𝑅 𝑦 → 𝑥 ∈ ∪ ∪ 𝑅 ) |
7 |
6
|
adantr |
⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 ∈ ∪ ∪ 𝑅 ) |
8 |
7
|
pm4.71ri |
⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) |
9 |
8
|
bibi1i |
⊢ ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 = 𝑦 ) ) ↔ ( ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 = 𝑦 ) ) ) |
10 |
|
elin |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ∧ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) ) |
11 |
2 3
|
brcnv |
⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
12 |
|
df-br |
⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) |
13 |
11 12
|
bitr3i |
⊢ ( 𝑦 𝑅 𝑥 ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) |
14 |
1 13
|
anbi12i |
⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ∧ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) ) |
15 |
10 14
|
bitr4i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) |
16 |
3
|
opelresi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ) |
17 |
|
df-br |
⊢ ( 𝑥 I 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ I ) |
18 |
3
|
ideq |
⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
19 |
17 18
|
bitr3i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ I ↔ 𝑥 = 𝑦 ) |
20 |
19
|
anbi2i |
⊢ ( ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 = 𝑦 ) ) |
21 |
16 20
|
bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 = 𝑦 ) ) |
22 |
15 21
|
bibi12i |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 = 𝑦 ) ) ) |
23 |
|
pm5.32 |
⊢ ( ( 𝑥 ∈ ∪ ∪ 𝑅 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ↔ ( ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 = 𝑦 ) ) ) |
24 |
9 22 23
|
3bitr4i |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ) |
25 |
24
|
albii |
⊢ ( ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ↔ ∀ 𝑦 ( 𝑥 ∈ ∪ ∪ 𝑅 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ) |
26 |
|
19.21v |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ ∪ ∪ 𝑅 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ) |
27 |
25 26
|
bitri |
⊢ ( ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ) |
28 |
27
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ) |
29 |
|
relcnv |
⊢ Rel ◡ 𝑅 |
30 |
|
relin2 |
⊢ ( Rel ◡ 𝑅 → Rel ( 𝑅 ∩ ◡ 𝑅 ) ) |
31 |
29 30
|
ax-mp |
⊢ Rel ( 𝑅 ∩ ◡ 𝑅 ) |
32 |
|
relres |
⊢ Rel ( I ↾ ∪ ∪ 𝑅 ) |
33 |
|
eqrel |
⊢ ( ( Rel ( 𝑅 ∩ ◡ 𝑅 ) ∧ Rel ( I ↾ ∪ ∪ 𝑅 ) ) → ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ) ) |
34 |
31 32 33
|
mp2an |
⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ) |
35 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ) |
36 |
28 34 35
|
3bitr4i |
⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |