| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asymref |
⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |
| 2 |
|
albiim |
⊢ ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ) |
| 3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ) |
| 4 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ) |
| 5 |
|
ancom |
⊢ ( ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ∧ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 6 |
|
equcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
| 7 |
6
|
imbi1i |
⊢ ( ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) |
| 8 |
7
|
albii |
⊢ ( ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) |
| 9 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑥 ) ) |
| 10 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) |
| 11 |
9 10
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑥 ∧ 𝑥 𝑅 𝑥 ) ) ) |
| 12 |
|
anidm |
⊢ ( ( 𝑥 𝑅 𝑥 ∧ 𝑥 𝑅 𝑥 ) ↔ 𝑥 𝑅 𝑥 ) |
| 13 |
11 12
|
bitrdi |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 𝑅 𝑥 ) ) |
| 14 |
13
|
equsalvw |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ 𝑥 𝑅 𝑥 ) |
| 15 |
8 14
|
bitri |
⊢ ( ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ 𝑥 𝑅 𝑥 ) |
| 16 |
15
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ) |
| 17 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 18 |
|
df-br |
⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
| 19 |
|
vex |
⊢ 𝑥 ∈ V |
| 20 |
|
vex |
⊢ 𝑦 ∈ V |
| 21 |
19 20
|
opeluu |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑦 ∈ ∪ ∪ 𝑅 ) ) |
| 22 |
21
|
simpld |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 𝑥 ∈ ∪ ∪ 𝑅 ) |
| 23 |
18 22
|
sylbi |
⊢ ( 𝑥 𝑅 𝑦 → 𝑥 ∈ ∪ ∪ 𝑅 ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 ∈ ∪ ∪ 𝑅 ) |
| 25 |
24
|
pm2.24d |
⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → ( ¬ 𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 = 𝑦 ) ) |
| 26 |
25
|
com12 |
⊢ ( ¬ 𝑥 ∈ ∪ ∪ 𝑅 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 27 |
26
|
alrimiv |
⊢ ( ¬ 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 28 |
|
id |
⊢ ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 29 |
27 28
|
ja |
⊢ ( ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 30 |
|
ax-1 |
⊢ ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) → ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 31 |
29 30
|
impbii |
⊢ ( ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 32 |
31
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 33 |
17 32
|
bitri |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 34 |
16 33
|
anbi12i |
⊢ ( ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ∧ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 35 |
4 5 34
|
3bitri |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
| 36 |
1 3 35
|
3bitri |
⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |