Step |
Hyp |
Ref |
Expression |
1 |
|
asymref |
⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |
2 |
|
albiim |
⊢ ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ↔ ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ) |
3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ) |
4 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ) |
5 |
|
ancom |
⊢ ( ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ∧ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
6 |
|
equcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
7 |
6
|
imbi1i |
⊢ ( ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) |
8 |
7
|
albii |
⊢ ( ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) |
9 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑥 ) ) |
10 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) |
11 |
9 10
|
anbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑥 ∧ 𝑥 𝑅 𝑥 ) ) ) |
12 |
|
anidm |
⊢ ( ( 𝑥 𝑅 𝑥 ∧ 𝑥 𝑅 𝑥 ) ↔ 𝑥 𝑅 𝑥 ) |
13 |
11 12
|
bitrdi |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 𝑅 𝑥 ) ) |
14 |
13
|
equsalvw |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ 𝑥 𝑅 𝑥 ) |
15 |
8 14
|
bitri |
⊢ ( ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ 𝑥 𝑅 𝑥 ) |
16 |
15
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ) |
17 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
18 |
|
df-br |
⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
19 |
|
vex |
⊢ 𝑥 ∈ V |
20 |
|
vex |
⊢ 𝑦 ∈ V |
21 |
19 20
|
opeluu |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑦 ∈ ∪ ∪ 𝑅 ) ) |
22 |
21
|
simpld |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → 𝑥 ∈ ∪ ∪ 𝑅 ) |
23 |
18 22
|
sylbi |
⊢ ( 𝑥 𝑅 𝑦 → 𝑥 ∈ ∪ ∪ 𝑅 ) |
24 |
23
|
adantr |
⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 ∈ ∪ ∪ 𝑅 ) |
25 |
24
|
pm2.24d |
⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → ( ¬ 𝑥 ∈ ∪ ∪ 𝑅 → 𝑥 = 𝑦 ) ) |
26 |
25
|
com12 |
⊢ ( ¬ 𝑥 ∈ ∪ ∪ 𝑅 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
27 |
26
|
alrimiv |
⊢ ( ¬ 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
28 |
|
id |
⊢ ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
29 |
27 28
|
ja |
⊢ ( ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
30 |
|
ax-1 |
⊢ ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) → ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
31 |
29 30
|
impbii |
⊢ ( ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
32 |
31
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
33 |
17 32
|
bitri |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
34 |
16 33
|
anbi12i |
⊢ ( ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ∧ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
35 |
4 5 34
|
3bitri |
⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ( ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ∧ ∀ 𝑦 ( 𝑥 = 𝑦 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |
36 |
1 3 35
|
3bitri |
⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 𝑥 𝑅 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) ) |