Step |
Hyp |
Ref |
Expression |
1 |
|
atabs.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
atabs.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
4 |
1 3
|
atabsi |
⊢ ( 𝐶 ∈ HAtoms → ( ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
5 |
1 1 2
|
chjassi |
⊢ ( ( 𝐴 ∨ℋ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝐴 ∨ℋ ( 𝐴 ∨ℋ 𝐵 ) ) |
6 |
1
|
chjidmi |
⊢ ( 𝐴 ∨ℋ 𝐴 ) = 𝐴 |
7 |
6
|
oveq1i |
⊢ ( ( 𝐴 ∨ℋ 𝐴 ) ∨ℋ 𝐵 ) = ( 𝐴 ∨ℋ 𝐵 ) |
8 |
5 7
|
eqtr3i |
⊢ ( 𝐴 ∨ℋ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐴 ∨ℋ 𝐵 ) |
9 |
8
|
sseq2i |
⊢ ( 𝐶 ⊆ ( 𝐴 ∨ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
10 |
9
|
notbii |
⊢ ( ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
11 |
1 2
|
chabs2i |
⊢ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐴 |
12 |
11
|
eqeq2i |
⊢ ( ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐴 ) |
13 |
4 10 12
|
3imtr3g |
⊢ ( 𝐶 ∈ HAtoms → ( ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐴 ) ) |