Metamath Proof Explorer


Theorem atabs2i

Description: Absorption of an incomparable atom. (Contributed by NM, 18-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses atabs.1 𝐴C
atabs.2 𝐵C
Assertion atabs2i ( 𝐶 ∈ HAtoms → ( ¬ 𝐶 ⊆ ( 𝐴 𝐵 ) → ( ( 𝐴 𝐶 ) ∩ ( 𝐴 𝐵 ) ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 atabs.1 𝐴C
2 atabs.2 𝐵C
3 1 2 chjcli ( 𝐴 𝐵 ) ∈ C
4 1 3 atabsi ( 𝐶 ∈ HAtoms → ( ¬ 𝐶 ⊆ ( 𝐴 ( 𝐴 𝐵 ) ) → ( ( 𝐴 𝐶 ) ∩ ( 𝐴 𝐵 ) ) = ( 𝐴 ∩ ( 𝐴 𝐵 ) ) ) )
5 1 1 2 chjassi ( ( 𝐴 𝐴 ) ∨ 𝐵 ) = ( 𝐴 ( 𝐴 𝐵 ) )
6 1 chjidmi ( 𝐴 𝐴 ) = 𝐴
7 6 oveq1i ( ( 𝐴 𝐴 ) ∨ 𝐵 ) = ( 𝐴 𝐵 )
8 5 7 eqtr3i ( 𝐴 ( 𝐴 𝐵 ) ) = ( 𝐴 𝐵 )
9 8 sseq2i ( 𝐶 ⊆ ( 𝐴 ( 𝐴 𝐵 ) ) ↔ 𝐶 ⊆ ( 𝐴 𝐵 ) )
10 9 notbii ( ¬ 𝐶 ⊆ ( 𝐴 ( 𝐴 𝐵 ) ) ↔ ¬ 𝐶 ⊆ ( 𝐴 𝐵 ) )
11 1 2 chabs2i ( 𝐴 ∩ ( 𝐴 𝐵 ) ) = 𝐴
12 11 eqeq2i ( ( ( 𝐴 𝐶 ) ∩ ( 𝐴 𝐵 ) ) = ( 𝐴 ∩ ( 𝐴 𝐵 ) ) ↔ ( ( 𝐴 𝐶 ) ∩ ( 𝐴 𝐵 ) ) = 𝐴 )
13 4 10 12 3imtr3g ( 𝐶 ∈ HAtoms → ( ¬ 𝐶 ⊆ ( 𝐴 𝐵 ) → ( ( 𝐴 𝐶 ) ∩ ( 𝐴 𝐵 ) ) = 𝐴 ) )