Step |
Hyp |
Ref |
Expression |
1 |
|
atabs.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
atabs.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
|
inass |
⊢ ( ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ∩ 𝐵 ) = ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐵 ) ) |
4 |
1 2
|
chjcomi |
⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( 𝐵 ∨ℋ 𝐴 ) |
5 |
4
|
ineq1i |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐵 ) = ( ( 𝐵 ∨ℋ 𝐴 ) ∩ 𝐵 ) |
6 |
|
incom |
⊢ ( ( 𝐵 ∨ℋ 𝐴 ) ∩ 𝐵 ) = ( 𝐵 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) |
7 |
2 1
|
chabs2i |
⊢ ( 𝐵 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) = 𝐵 |
8 |
5 6 7
|
3eqtri |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐵 ) = 𝐵 |
9 |
8
|
ineq2i |
⊢ ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐵 ) ) = ( ( 𝐴 ∨ℋ 𝐶 ) ∩ 𝐵 ) |
10 |
3 9
|
eqtr2i |
⊢ ( ( 𝐴 ∨ℋ 𝐶 ) ∩ 𝐵 ) = ( ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ∩ 𝐵 ) |
11 |
1 2
|
chub1i |
⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
12 |
|
atelch |
⊢ ( 𝐶 ∈ HAtoms → 𝐶 ∈ Cℋ ) |
13 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
14 |
|
atmd |
⊢ ( ( 𝐶 ∈ HAtoms ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ) → 𝐶 𝑀ℋ ( 𝐴 ∨ℋ 𝐵 ) ) |
15 |
13 14
|
mpan2 |
⊢ ( 𝐶 ∈ HAtoms → 𝐶 𝑀ℋ ( 𝐴 ∨ℋ 𝐵 ) ) |
16 |
|
mdi |
⊢ ( ( ( 𝐶 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) ∧ ( 𝐶 𝑀ℋ ( 𝐴 ∨ℋ 𝐵 ) ∧ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
17 |
16
|
exp32 |
⊢ ( ( 𝐶 ∈ Cℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐶 𝑀ℋ ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) ) |
18 |
13 1 17
|
mp3an23 |
⊢ ( 𝐶 ∈ Cℋ → ( 𝐶 𝑀ℋ ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) ) |
19 |
12 15 18
|
sylc |
⊢ ( 𝐶 ∈ HAtoms → ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) ) |
20 |
11 19
|
mpi |
⊢ ( 𝐶 ∈ HAtoms → ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( 𝐴 ∨ℋ ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) ) |
22 |
|
incom |
⊢ ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) |
23 |
|
atnssm0 |
⊢ ( ( ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ ∧ 𝐶 ∈ HAtoms ) → ( ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) = 0ℋ ) ) |
24 |
13 23
|
mpan |
⊢ ( 𝐶 ∈ HAtoms → ( ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) = 0ℋ ) ) |
25 |
24
|
biimpa |
⊢ ( ( 𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( 𝐴 ∨ℋ 𝐵 ) ∩ 𝐶 ) = 0ℋ ) |
26 |
22 25
|
syl5eq |
⊢ ( ( 𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 0ℋ ) |
27 |
26
|
oveq2d |
⊢ ( ( 𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( 𝐴 ∨ℋ ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 0ℋ ) ) |
28 |
1
|
chj0i |
⊢ ( 𝐴 ∨ℋ 0ℋ ) = 𝐴 |
29 |
27 28
|
eqtrdi |
⊢ ( ( 𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( 𝐴 ∨ℋ ( 𝐶 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = 𝐴 ) |
30 |
21 29
|
eqtrd |
⊢ ( ( 𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐴 ) |
31 |
30
|
ineq1d |
⊢ ( ( 𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( ( 𝐴 ∨ℋ 𝐶 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ∩ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) ) |
32 |
10 31
|
syl5eq |
⊢ ( ( 𝐶 ∈ HAtoms ∧ ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∩ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) ) |
33 |
32
|
ex |
⊢ ( 𝐶 ∈ HAtoms → ( ¬ 𝐶 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ( 𝐴 ∨ℋ 𝐶 ) ∩ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) ) ) |