Metamath Proof Explorer


Theorem atancl

Description: Closure for the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atancl ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 atanf arctan : ( ℂ ∖ { - i , i } ) ⟶ ℂ
2 1 ffvelrni ( 𝐴 ∈ ( ℂ ∖ { - i , i } ) → ( arctan ‘ 𝐴 ) ∈ ℂ )
3 1 fdmi dom arctan = ( ℂ ∖ { - i , i } )
4 2 3 eleq2s ( 𝐴 ∈ dom arctan → ( arctan ‘ 𝐴 ) ∈ ℂ )