| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atansopn.d | ⊢ 𝐷  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 2 |  | atansopn.s | ⊢ 𝑆  =  { 𝑦  ∈  ℂ  ∣  ( 1  +  ( 𝑦 ↑ 2 ) )  ∈  𝐷 } | 
						
							| 3 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 4 |  | atanf | ⊢ arctan : ( ℂ  ∖  { - i ,  i } ) ⟶ ℂ | 
						
							| 5 | 1 2 | atansssdm | ⊢ 𝑆  ⊆  dom  arctan | 
						
							| 6 | 4 | fdmi | ⊢ dom  arctan  =  ( ℂ  ∖  { - i ,  i } ) | 
						
							| 7 | 5 6 | sseqtri | ⊢ 𝑆  ⊆  ( ℂ  ∖  { - i ,  i } ) | 
						
							| 8 |  | fssres | ⊢ ( ( arctan : ( ℂ  ∖  { - i ,  i } ) ⟶ ℂ  ∧  𝑆  ⊆  ( ℂ  ∖  { - i ,  i } ) )  →  ( arctan  ↾  𝑆 ) : 𝑆 ⟶ ℂ ) | 
						
							| 9 | 4 7 8 | mp2an | ⊢ ( arctan  ↾  𝑆 ) : 𝑆 ⟶ ℂ | 
						
							| 10 | 2 | ssrab3 | ⊢ 𝑆  ⊆  ℂ | 
						
							| 11 |  | ovex | ⊢ ( 1  /  ( 1  +  ( 𝑥 ↑ 2 ) ) )  ∈  V | 
						
							| 12 | 1 2 | dvatan | ⊢ ( ℂ  D  ( arctan  ↾  𝑆 ) )  =  ( 𝑥  ∈  𝑆  ↦  ( 1  /  ( 1  +  ( 𝑥 ↑ 2 ) ) ) ) | 
						
							| 13 | 11 12 | dmmpti | ⊢ dom  ( ℂ  D  ( arctan  ↾  𝑆 ) )  =  𝑆 | 
						
							| 14 |  | dvcn | ⊢ ( ( ( ℂ  ⊆  ℂ  ∧  ( arctan  ↾  𝑆 ) : 𝑆 ⟶ ℂ  ∧  𝑆  ⊆  ℂ )  ∧  dom  ( ℂ  D  ( arctan  ↾  𝑆 ) )  =  𝑆 )  →  ( arctan  ↾  𝑆 )  ∈  ( 𝑆 –cn→ ℂ ) ) | 
						
							| 15 | 13 14 | mpan2 | ⊢ ( ( ℂ  ⊆  ℂ  ∧  ( arctan  ↾  𝑆 ) : 𝑆 ⟶ ℂ  ∧  𝑆  ⊆  ℂ )  →  ( arctan  ↾  𝑆 )  ∈  ( 𝑆 –cn→ ℂ ) ) | 
						
							| 16 | 3 9 10 15 | mp3an | ⊢ ( arctan  ↾  𝑆 )  ∈  ( 𝑆 –cn→ ℂ ) |