Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝐴 ∈ ( ℂ ∖ { - i , i } ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ { - i , i } ) ) |
2 |
|
elprg |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ { - i , i } ↔ ( 𝐴 = - i ∨ 𝐴 = i ) ) ) |
3 |
2
|
notbid |
⊢ ( 𝐴 ∈ ℂ → ( ¬ 𝐴 ∈ { - i , i } ↔ ¬ ( 𝐴 = - i ∨ 𝐴 = i ) ) ) |
4 |
|
neanior |
⊢ ( ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ↔ ¬ ( 𝐴 = - i ∨ 𝐴 = i ) ) |
5 |
3 4
|
bitr4di |
⊢ ( 𝐴 ∈ ℂ → ( ¬ 𝐴 ∈ { - i , i } ↔ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
6 |
5
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ { - i , i } ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
7 |
1 6
|
bitri |
⊢ ( 𝐴 ∈ ( ℂ ∖ { - i , i } ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
8 |
|
ovex |
⊢ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ∈ V |
9 |
|
df-atan |
⊢ arctan = ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) |
10 |
8 9
|
dmmpti |
⊢ dom arctan = ( ℂ ∖ { - i , i } ) |
11 |
10
|
eleq2i |
⊢ ( 𝐴 ∈ dom arctan ↔ 𝐴 ∈ ( ℂ ∖ { - i , i } ) ) |
12 |
|
3anass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
13 |
7 11 12
|
3bitr4i |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) |