Step |
Hyp |
Ref |
Expression |
1 |
|
atandm |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) |
2 |
|
3anass |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ↔ ( 𝐴 ∈ ℂ ∧ ( ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) ) |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
|
ax-icn |
⊢ i ∈ ℂ |
5 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
6 |
4 5
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
7 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ( 1 − ( i · 𝐴 ) ) = 0 ↔ 1 = ( i · 𝐴 ) ) ) |
8 |
3 6 7
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( i · 𝐴 ) ) = 0 ↔ 1 = ( i · 𝐴 ) ) ) |
9 |
4 4
|
mulneg2i |
⊢ ( i · - i ) = - ( i · i ) |
10 |
|
ixi |
⊢ ( i · i ) = - 1 |
11 |
10
|
negeqi |
⊢ - ( i · i ) = - - 1 |
12 |
|
negneg1e1 |
⊢ - - 1 = 1 |
13 |
9 11 12
|
3eqtri |
⊢ ( i · - i ) = 1 |
14 |
13
|
eqeq2i |
⊢ ( ( i · 𝐴 ) = ( i · - i ) ↔ ( i · 𝐴 ) = 1 ) |
15 |
|
eqcom |
⊢ ( ( i · 𝐴 ) = 1 ↔ 1 = ( i · 𝐴 ) ) |
16 |
14 15
|
bitri |
⊢ ( ( i · 𝐴 ) = ( i · - i ) ↔ 1 = ( i · 𝐴 ) ) |
17 |
8 16
|
bitr4di |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( i · 𝐴 ) ) = 0 ↔ ( i · 𝐴 ) = ( i · - i ) ) ) |
18 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
19 |
4
|
negcli |
⊢ - i ∈ ℂ |
20 |
19
|
a1i |
⊢ ( 𝐴 ∈ ℂ → - i ∈ ℂ ) |
21 |
4
|
a1i |
⊢ ( 𝐴 ∈ ℂ → i ∈ ℂ ) |
22 |
|
ine0 |
⊢ i ≠ 0 |
23 |
22
|
a1i |
⊢ ( 𝐴 ∈ ℂ → i ≠ 0 ) |
24 |
18 20 21 23
|
mulcand |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) = ( i · - i ) ↔ 𝐴 = - i ) ) |
25 |
17 24
|
bitrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( i · 𝐴 ) ) = 0 ↔ 𝐴 = - i ) ) |
26 |
25
|
necon3bid |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( i · 𝐴 ) ) ≠ 0 ↔ 𝐴 ≠ - i ) ) |
27 |
|
addcom |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + 1 ) ) |
28 |
3 6 27
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + 1 ) ) |
29 |
|
subneg |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( i · 𝐴 ) − - 1 ) = ( ( i · 𝐴 ) + 1 ) ) |
30 |
6 3 29
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) − - 1 ) = ( ( i · 𝐴 ) + 1 ) ) |
31 |
28 30
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( i · 𝐴 ) ) = ( ( i · 𝐴 ) − - 1 ) ) |
32 |
31
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) = 0 ↔ ( ( i · 𝐴 ) − - 1 ) = 0 ) ) |
33 |
3
|
negcli |
⊢ - 1 ∈ ℂ |
34 |
|
subeq0 |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ - 1 ∈ ℂ ) → ( ( ( i · 𝐴 ) − - 1 ) = 0 ↔ ( i · 𝐴 ) = - 1 ) ) |
35 |
6 33 34
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) − - 1 ) = 0 ↔ ( i · 𝐴 ) = - 1 ) ) |
36 |
32 35
|
bitrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) = 0 ↔ ( i · 𝐴 ) = - 1 ) ) |
37 |
10
|
eqeq2i |
⊢ ( ( i · 𝐴 ) = ( i · i ) ↔ ( i · 𝐴 ) = - 1 ) |
38 |
36 37
|
bitr4di |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) = 0 ↔ ( i · 𝐴 ) = ( i · i ) ) ) |
39 |
18 21 21 23
|
mulcand |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) = ( i · i ) ↔ 𝐴 = i ) ) |
40 |
38 39
|
bitrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) = 0 ↔ 𝐴 = i ) ) |
41 |
40
|
necon3bid |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) ≠ 0 ↔ 𝐴 ≠ i ) ) |
42 |
26 41
|
anbi12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ↔ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
43 |
42
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
44 |
|
3anass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
45 |
43 44
|
bitr4i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) |
46 |
2 45
|
bitri |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) |
47 |
1 46
|
bitr4i |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) |