Step |
Hyp |
Ref |
Expression |
1 |
|
3anass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
2 |
|
atandm |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) |
3 |
|
ax-icn |
⊢ i ∈ ℂ |
4 |
|
sqeqor |
⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( i ↑ 2 ) ↔ ( 𝐴 = i ∨ 𝐴 = - i ) ) ) |
5 |
3 4
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = ( i ↑ 2 ) ↔ ( 𝐴 = i ∨ 𝐴 = - i ) ) ) |
6 |
|
i2 |
⊢ ( i ↑ 2 ) = - 1 |
7 |
6
|
eqeq2i |
⊢ ( ( 𝐴 ↑ 2 ) = ( i ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) = - 1 ) |
8 |
|
orcom |
⊢ ( ( 𝐴 = i ∨ 𝐴 = - i ) ↔ ( 𝐴 = - i ∨ 𝐴 = i ) ) |
9 |
5 7 8
|
3bitr3g |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = - 1 ↔ ( 𝐴 = - i ∨ 𝐴 = i ) ) ) |
10 |
9
|
necon3abid |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) ≠ - 1 ↔ ¬ ( 𝐴 = - i ∨ 𝐴 = i ) ) ) |
11 |
|
neanior |
⊢ ( ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ↔ ¬ ( 𝐴 = - i ∨ 𝐴 = i ) ) |
12 |
10 11
|
bitr4di |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) ≠ - 1 ↔ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
13 |
12
|
pm5.32i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
14 |
1 2 13
|
3bitr4i |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ) |