Metamath Proof Explorer


Theorem atandmneg

Description: The domain of the arctangent function is closed under negatives. (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion atandmneg ( 𝐴 ∈ dom arctan → - 𝐴 ∈ dom arctan )

Proof

Step Hyp Ref Expression
1 atandm3 ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) )
2 1 simplbi ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ )
3 2 negcld ( 𝐴 ∈ dom arctan → - 𝐴 ∈ ℂ )
4 sqneg ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) )
5 2 4 syl ( 𝐴 ∈ dom arctan → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) )
6 1 simprbi ( 𝐴 ∈ dom arctan → ( 𝐴 ↑ 2 ) ≠ - 1 )
7 5 6 eqnetrd ( 𝐴 ∈ dom arctan → ( - 𝐴 ↑ 2 ) ≠ - 1 )
8 atandm3 ( - 𝐴 ∈ dom arctan ↔ ( - 𝐴 ∈ ℂ ∧ ( - 𝐴 ↑ 2 ) ≠ - 1 ) )
9 3 7 8 sylanbrc ( 𝐴 ∈ dom arctan → - 𝐴 ∈ dom arctan )