Description: The domain of the arctangent function is closed under negatives. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandmneg | ⊢ ( 𝐴 ∈ dom arctan → - 𝐴 ∈ dom arctan ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atandm3 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ ) |
| 3 | 2 | negcld | ⊢ ( 𝐴 ∈ dom arctan → - 𝐴 ∈ ℂ ) |
| 4 | sqneg | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 5 | 2 4 | syl | ⊢ ( 𝐴 ∈ dom arctan → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 6 | 1 | simprbi | ⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 ↑ 2 ) ≠ - 1 ) |
| 7 | 5 6 | eqnetrd | ⊢ ( 𝐴 ∈ dom arctan → ( - 𝐴 ↑ 2 ) ≠ - 1 ) |
| 8 | atandm3 | ⊢ ( - 𝐴 ∈ dom arctan ↔ ( - 𝐴 ∈ ℂ ∧ ( - 𝐴 ↑ 2 ) ≠ - 1 ) ) | |
| 9 | 3 7 8 | sylanbrc | ⊢ ( 𝐴 ∈ dom arctan → - 𝐴 ∈ dom arctan ) |