| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ ℂ ) |
| 2 |
|
tanval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 3 |
2
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( tan ‘ 𝐴 ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ↑ 2 ) ) |
| 4 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 6 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 8 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 9 |
5 7 8
|
sqdivd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 10 |
3 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( tan ‘ 𝐴 ) ↑ 2 ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 11 |
5
|
sqcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 12 |
7
|
sqcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 13 |
12
|
negcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - ( ( cos ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 14 |
11 12
|
subnegd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) − - ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 15 |
|
sincossq |
⊢ ( 𝐴 ∈ ℂ → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) + ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 17 |
14 16
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) − - ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 18 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 19 |
18
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → 1 ≠ 0 ) |
| 20 |
17 19
|
eqnetrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) − - ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ≠ 0 ) |
| 21 |
11 13 20
|
subne0ad |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ 𝐴 ) ↑ 2 ) ≠ - ( ( cos ‘ 𝐴 ) ↑ 2 ) ) |
| 22 |
12
|
mulm1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( - 1 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = - ( ( cos ‘ 𝐴 ) ↑ 2 ) ) |
| 23 |
21 22
|
neeqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( sin ‘ 𝐴 ) ↑ 2 ) ≠ ( - 1 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) |
| 24 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 25 |
24
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → - 1 ∈ ℂ ) |
| 26 |
|
sqne0 |
⊢ ( ( cos ‘ 𝐴 ) ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( cos ‘ 𝐴 ) ≠ 0 ) ) |
| 27 |
6 26
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ↔ ( cos ‘ 𝐴 ) ≠ 0 ) ) |
| 28 |
27
|
biimpar |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( cos ‘ 𝐴 ) ↑ 2 ) ≠ 0 ) |
| 29 |
11 25 12 28
|
divmul3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) = - 1 ↔ ( ( sin ‘ 𝐴 ) ↑ 2 ) = ( - 1 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 30 |
29
|
necon3bid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ≠ - 1 ↔ ( ( sin ‘ 𝐴 ) ↑ 2 ) ≠ ( - 1 · ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 31 |
23 30
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( ( sin ‘ 𝐴 ) ↑ 2 ) / ( ( cos ‘ 𝐴 ) ↑ 2 ) ) ≠ - 1 ) |
| 32 |
10 31
|
eqnetrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( ( tan ‘ 𝐴 ) ↑ 2 ) ≠ - 1 ) |
| 33 |
|
atandm3 |
⊢ ( ( tan ‘ 𝐴 ) ∈ dom arctan ↔ ( ( tan ‘ 𝐴 ) ∈ ℂ ∧ ( ( tan ‘ 𝐴 ) ↑ 2 ) ≠ - 1 ) ) |
| 34 |
1 32 33
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ dom arctan ) |