| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
⊢ ( 𝐴 ∈ dom arctan → 0 ∈ ℝ ) |
| 2 |
|
atandm2 |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) |
| 3 |
2
|
simp1bi |
⊢ ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ ) |
| 4 |
3
|
recld |
⊢ ( 𝐴 ∈ dom arctan → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
|
atanlogaddlem |
⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |
| 6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 7 |
|
ax-icn |
⊢ i ∈ ℂ |
| 8 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 9 |
7 3 8
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( i · 𝐴 ) ∈ ℂ ) |
| 10 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 11 |
6 9 10
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 12 |
2
|
simp3bi |
⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ≠ 0 ) |
| 13 |
11 12
|
logcld |
⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 14 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 15 |
6 9 14
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 16 |
2
|
simp2bi |
⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ≠ 0 ) |
| 17 |
15 16
|
logcld |
⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ) |
| 18 |
13 17
|
addcomd |
⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) + ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 19 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 20 |
7 3 19
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · - 𝐴 ) ) = ( 1 + - ( i · 𝐴 ) ) ) |
| 22 |
|
negsub |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + - ( i · 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 23 |
6 9 22
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( 1 + - ( i · 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 24 |
21 23
|
eqtrd |
⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · - 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) = ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) |
| 26 |
20
|
oveq2d |
⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · - 𝐴 ) ) = ( 1 − - ( i · 𝐴 ) ) ) |
| 27 |
|
subneg |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − - ( i · 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 28 |
6 9 27
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( 1 − - ( i · 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 29 |
26 28
|
eqtrd |
⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · - 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 30 |
29
|
fveq2d |
⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) = ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) |
| 31 |
25 30
|
oveq12d |
⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) = ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) + ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
| 32 |
18 31
|
eqtr4d |
⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) ) |
| 34 |
|
atandmneg |
⊢ ( 𝐴 ∈ dom arctan → - 𝐴 ∈ dom arctan ) |
| 35 |
4
|
le0neg1d |
⊢ ( 𝐴 ∈ dom arctan → ( ( ℜ ‘ 𝐴 ) ≤ 0 ↔ 0 ≤ - ( ℜ ‘ 𝐴 ) ) ) |
| 36 |
35
|
biimpa |
⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ - ( ℜ ‘ 𝐴 ) ) |
| 37 |
3
|
renegd |
⊢ ( 𝐴 ∈ dom arctan → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
| 39 |
36 38
|
breqtrrd |
⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ ( ℜ ‘ - 𝐴 ) ) |
| 40 |
|
atanlogaddlem |
⊢ ( ( - 𝐴 ∈ dom arctan ∧ 0 ≤ ( ℜ ‘ - 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) ∈ ran log ) |
| 41 |
34 39 40
|
syl2an2r |
⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) ∈ ran log ) |
| 42 |
33 41
|
eqeltrd |
⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |
| 43 |
1 4 5 42
|
lecasei |
⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |