Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( 𝐴 ∈ dom arctan → 0 ∈ ℝ ) |
2 |
|
atandm2 |
⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ≠ 0 ∧ ( 1 + ( i · 𝐴 ) ) ≠ 0 ) ) |
3 |
2
|
simp1bi |
⊢ ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ ) |
4 |
3
|
recld |
⊢ ( 𝐴 ∈ dom arctan → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
5 |
|
atanlogaddlem |
⊢ ( ( 𝐴 ∈ dom arctan ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |
6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
7 |
|
ax-icn |
⊢ i ∈ ℂ |
8 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
9 |
7 3 8
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( i · 𝐴 ) ∈ ℂ ) |
10 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
11 |
6 9 10
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
12 |
2
|
simp3bi |
⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · 𝐴 ) ) ≠ 0 ) |
13 |
11 12
|
logcld |
⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ∈ ℂ ) |
14 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
15 |
6 9 14
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
16 |
2
|
simp2bi |
⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · 𝐴 ) ) ≠ 0 ) |
17 |
15 16
|
logcld |
⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ∈ ℂ ) |
18 |
13 17
|
addcomd |
⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) + ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
19 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
20 |
7 3 19
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · - 𝐴 ) ) = ( 1 + - ( i · 𝐴 ) ) ) |
22 |
|
negsub |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + - ( i · 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
23 |
6 9 22
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( 1 + - ( i · 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
24 |
21 23
|
eqtrd |
⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( i · - 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) = ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) |
26 |
20
|
oveq2d |
⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · - 𝐴 ) ) = ( 1 − - ( i · 𝐴 ) ) ) |
27 |
|
subneg |
⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − - ( i · 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) |
28 |
6 9 27
|
sylancr |
⊢ ( 𝐴 ∈ dom arctan → ( 1 − - ( i · 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) |
29 |
26 28
|
eqtrd |
⊢ ( 𝐴 ∈ dom arctan → ( 1 − ( i · - 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) ) |
30 |
29
|
fveq2d |
⊢ ( 𝐴 ∈ dom arctan → ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) = ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) |
31 |
25 30
|
oveq12d |
⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) = ( ( log ‘ ( 1 − ( i · 𝐴 ) ) ) + ( log ‘ ( 1 + ( i · 𝐴 ) ) ) ) ) |
32 |
18 31
|
eqtr4d |
⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) = ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) ) |
34 |
|
atandmneg |
⊢ ( 𝐴 ∈ dom arctan → - 𝐴 ∈ dom arctan ) |
35 |
4
|
le0neg1d |
⊢ ( 𝐴 ∈ dom arctan → ( ( ℜ ‘ 𝐴 ) ≤ 0 ↔ 0 ≤ - ( ℜ ‘ 𝐴 ) ) ) |
36 |
35
|
biimpa |
⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ - ( ℜ ‘ 𝐴 ) ) |
37 |
3
|
renegd |
⊢ ( 𝐴 ∈ dom arctan → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
39 |
36 38
|
breqtrrd |
⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ ( ℜ ‘ - 𝐴 ) ) |
40 |
|
atanlogaddlem |
⊢ ( ( - 𝐴 ∈ dom arctan ∧ 0 ≤ ( ℜ ‘ - 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) ∈ ran log ) |
41 |
34 39 40
|
syl2an2r |
⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → ( ( log ‘ ( 1 + ( i · - 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · - 𝐴 ) ) ) ) ∈ ran log ) |
42 |
33 41
|
eqeltrd |
⊢ ( ( 𝐴 ∈ dom arctan ∧ ( ℜ ‘ 𝐴 ) ≤ 0 ) → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |
43 |
1 4 5 42
|
lecasei |
⊢ ( 𝐴 ∈ dom arctan → ( ( log ‘ ( 1 + ( i · 𝐴 ) ) ) + ( log ‘ ( 1 − ( i · 𝐴 ) ) ) ) ∈ ran log ) |