| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atanbnd | 
							⊢ ( 𝐴  ∈  ℝ  →  ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							atanbnd | 
							⊢ ( 𝐵  ∈  ℝ  →  ( arctan ‘ 𝐵 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							tanord | 
							⊢ ( ( ( arctan ‘ 𝐴 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  ∧  ( arctan ‘ 𝐵 )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) )  →  ( ( arctan ‘ 𝐴 )  <  ( arctan ‘ 𝐵 )  ↔  ( tan ‘ ( arctan ‘ 𝐴 ) )  <  ( tan ‘ ( arctan ‘ 𝐵 ) ) ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2an | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( arctan ‘ 𝐴 )  <  ( arctan ‘ 𝐵 )  ↔  ( tan ‘ ( arctan ‘ 𝐴 ) )  <  ( tan ‘ ( arctan ‘ 𝐵 ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							atanre | 
							⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  dom  arctan )  | 
						
						
							| 6 | 
							
								
							 | 
							tanatan | 
							⊢ ( 𝐴  ∈  dom  arctan  →  ( tan ‘ ( arctan ‘ 𝐴 ) )  =  𝐴 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							⊢ ( 𝐴  ∈  ℝ  →  ( tan ‘ ( arctan ‘ 𝐴 ) )  =  𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							atanre | 
							⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  dom  arctan )  | 
						
						
							| 9 | 
							
								
							 | 
							tanatan | 
							⊢ ( 𝐵  ∈  dom  arctan  →  ( tan ‘ ( arctan ‘ 𝐵 ) )  =  𝐵 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( 𝐵  ∈  ℝ  →  ( tan ‘ ( arctan ‘ 𝐵 ) )  =  𝐵 )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							breqan12d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( tan ‘ ( arctan ‘ 𝐴 ) )  <  ( tan ‘ ( arctan ‘ 𝐵 ) )  ↔  𝐴  <  𝐵 ) )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							bitr2d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  <  𝐵  ↔  ( arctan ‘ 𝐴 )  <  ( arctan ‘ 𝐵 ) ) )  |