Metamath Proof Explorer


Theorem atanre

Description: A real number is in the domain of the arctangent function. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion atanre ( 𝐴 ∈ ℝ → 𝐴 ∈ dom arctan )

Proof

Step Hyp Ref Expression
1 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
2 neg1rr - 1 ∈ ℝ
3 2 a1i ( 𝐴 ∈ ℝ → - 1 ∈ ℝ )
4 0red ( 𝐴 ∈ ℝ → 0 ∈ ℝ )
5 resqcl ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ∈ ℝ )
6 neg1lt0 - 1 < 0
7 6 a1i ( 𝐴 ∈ ℝ → - 1 < 0 )
8 sqge0 ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 ↑ 2 ) )
9 3 4 5 7 8 ltletrd ( 𝐴 ∈ ℝ → - 1 < ( 𝐴 ↑ 2 ) )
10 3 9 gtned ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) ≠ - 1 )
11 atandm3 ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) )
12 1 10 11 sylanbrc ( 𝐴 ∈ ℝ → 𝐴 ∈ dom arctan )