| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  𝐴  =  0 )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq2d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  ( arctan ‘ 𝐴 )  =  ( arctan ‘ 0 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							atan0 | 
							⊢ ( arctan ‘ 0 )  =  0  | 
						
						
							| 4 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqeltri | 
							⊢ ( arctan ‘ 0 )  ∈  ℝ  | 
						
						
							| 6 | 
							
								2 5
							 | 
							eqeltrdi | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  ( arctan ‘ 𝐴 )  ∈  ℝ )  | 
						
						
							| 7 | 
							
								
							 | 
							atanre | 
							⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  dom  arctan )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  𝐴  ∈  dom  arctan )  | 
						
						
							| 9 | 
							
								
							 | 
							atancl | 
							⊢ ( 𝐴  ∈  dom  arctan  →  ( arctan ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( arctan ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 11 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 12 | 
							
								11
							 | 
							recnd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 13 | 
							
								
							 | 
							rere | 
							⊢ ( 𝐴  ∈  ℝ  →  ( ℜ ‘ 𝐴 )  =  𝐴 )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( ℜ ‘ 𝐴 )  =  𝐴 )  | 
						
						
							| 15 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  𝐴  ≠  0 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqnetrd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( ℜ ‘ 𝐴 )  ≠  0 )  | 
						
						
							| 17 | 
							
								
							 | 
							atancj | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ≠  0 )  →  ( 𝐴  ∈  dom  arctan  ∧  ( ∗ ‘ ( arctan ‘ 𝐴 ) )  =  ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) )  | 
						
						
							| 18 | 
							
								12 16 17
							 | 
							syl2anc | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( 𝐴  ∈  dom  arctan  ∧  ( ∗ ‘ ( arctan ‘ 𝐴 ) )  =  ( arctan ‘ ( ∗ ‘ 𝐴 ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							simprd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( ∗ ‘ ( arctan ‘ 𝐴 ) )  =  ( arctan ‘ ( ∗ ‘ 𝐴 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							cjre | 
							⊢ ( 𝐴  ∈  ℝ  →  ( ∗ ‘ 𝐴 )  =  𝐴 )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( ∗ ‘ 𝐴 )  =  𝐴 )  | 
						
						
							| 22 | 
							
								21
							 | 
							fveq2d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( arctan ‘ ( ∗ ‘ 𝐴 ) )  =  ( arctan ‘ 𝐴 ) )  | 
						
						
							| 23 | 
							
								19 22
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( ∗ ‘ ( arctan ‘ 𝐴 ) )  =  ( arctan ‘ 𝐴 ) )  | 
						
						
							| 24 | 
							
								10 23
							 | 
							cjrebd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( arctan ‘ 𝐴 )  ∈  ℝ )  | 
						
						
							| 25 | 
							
								6 24
							 | 
							pm2.61dane | 
							⊢ ( 𝐴  ∈  ℝ  →  ( arctan ‘ 𝐴 )  ∈  ℝ )  |