Step |
Hyp |
Ref |
Expression |
1 |
|
cosne0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
2 |
|
atandmtan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ dom arctan ) |
3 |
1 2
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( tan ‘ 𝐴 ) ∈ dom arctan ) |
4 |
|
atanval |
⊢ ( ( tan ‘ 𝐴 ) ∈ dom arctan → ( arctan ‘ ( tan ‘ 𝐴 ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( arctan ‘ ( tan ‘ 𝐴 ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) |
6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
7 |
|
ax-icn |
⊢ i ∈ ℂ |
8 |
|
tancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) ∈ ℂ ) |
9 |
1 8
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( tan ‘ 𝐴 ) ∈ ℂ ) |
10 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( tan ‘ 𝐴 ) ∈ ℂ ) → ( i · ( tan ‘ 𝐴 ) ) ∈ ℂ ) |
11 |
7 9 10
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( tan ‘ 𝐴 ) ) ∈ ℂ ) |
12 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ ( i · ( tan ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℂ ) |
13 |
6 11 12
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℂ ) |
14 |
|
atandm2 |
⊢ ( ( tan ‘ 𝐴 ) ∈ dom arctan ↔ ( ( tan ‘ 𝐴 ) ∈ ℂ ∧ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ∧ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ) ) |
15 |
3 14
|
sylib |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( tan ‘ 𝐴 ) ∈ ℂ ∧ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ∧ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ) ) |
16 |
15
|
simp3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ) |
17 |
13 16
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
18 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( i · ( tan ‘ 𝐴 ) ) ∈ ℂ ) → ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℂ ) |
19 |
6 11 18
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℂ ) |
20 |
15
|
simp2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ) |
21 |
19 20
|
logcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
22 |
17 21
|
negsubdi2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) = ( ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) |
23 |
|
efsub |
⊢ ( ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ∈ ℂ ∧ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) = ( ( exp ‘ ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) / ( exp ‘ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) |
24 |
17 21 23
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) = ( ( exp ‘ ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) / ( exp ‘ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) |
25 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
26 |
25
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( cos ‘ 𝐴 ) ∈ ℂ ) |
27 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
28 |
27
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( sin ‘ 𝐴 ) ∈ ℂ ) |
29 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
30 |
7 28 29
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
31 |
26 30 26 1
|
divdird |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) / ( cos ‘ 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) + ( ( i · ( sin ‘ 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) ) |
32 |
26 1
|
dividd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( cos ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) = 1 ) |
33 |
7
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → i ∈ ℂ ) |
34 |
33 28 26 1
|
divassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i · ( sin ‘ 𝐴 ) ) / ( cos ‘ 𝐴 ) ) = ( i · ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) ) |
35 |
|
tanval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
36 |
1 35
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( tan ‘ 𝐴 ) ) = ( i · ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) ) |
38 |
34 37
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i · ( sin ‘ 𝐴 ) ) / ( cos ‘ 𝐴 ) ) = ( i · ( tan ‘ 𝐴 ) ) ) |
39 |
32 38
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( cos ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) + ( ( i · ( sin ‘ 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) = ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) |
40 |
31 39
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) / ( cos ‘ 𝐴 ) ) = ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) |
41 |
|
efival |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) |
43 |
42
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( exp ‘ ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) / ( cos ‘ 𝐴 ) ) ) |
44 |
|
eflog |
⊢ ( ( ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℂ ∧ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ) → ( exp ‘ ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) = ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) |
45 |
13 16 44
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) = ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) |
46 |
40 43 45
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( exp ‘ ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) = ( exp ‘ ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) |
47 |
26 30 26 1
|
divsubdird |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) / ( cos ‘ 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) − ( ( i · ( sin ‘ 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) ) |
48 |
32 38
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( cos ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) − ( ( i · ( sin ‘ 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) = ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) |
49 |
47 48
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) / ( cos ‘ 𝐴 ) ) = ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) |
50 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
51 |
50
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - 𝐴 ∈ ℂ ) |
52 |
|
efival |
⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ ( i · - 𝐴 ) ) = ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) ) |
53 |
51 52
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( i · - 𝐴 ) ) = ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) ) |
54 |
|
cosneg |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( cos ‘ - 𝐴 ) = ( cos ‘ 𝐴 ) ) |
56 |
|
sinneg |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ - 𝐴 ) = - ( sin ‘ 𝐴 ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( sin ‘ - 𝐴 ) = - ( sin ‘ 𝐴 ) ) |
58 |
57
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( sin ‘ - 𝐴 ) ) = ( i · - ( sin ‘ 𝐴 ) ) ) |
59 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · - ( sin ‘ 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
60 |
7 28 59
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · - ( sin ‘ 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
61 |
58 60
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( sin ‘ - 𝐴 ) ) = - ( i · ( sin ‘ 𝐴 ) ) ) |
62 |
55 61
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( cos ‘ - 𝐴 ) + ( i · ( sin ‘ - 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) ) |
63 |
53 62
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( i · - 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) ) |
64 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 𝐴 ∈ ℂ ) |
65 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
66 |
7 64 65
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
67 |
66
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( i · - 𝐴 ) ) = ( exp ‘ - ( i · 𝐴 ) ) ) |
68 |
26 30
|
negsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( cos ‘ 𝐴 ) + - ( i · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |
69 |
63 67 68
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ - ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) |
70 |
69
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( exp ‘ - ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) / ( cos ‘ 𝐴 ) ) ) |
71 |
|
eflog |
⊢ ( ( ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℂ ∧ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ≠ 0 ) → ( exp ‘ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) = ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) |
72 |
19 20 71
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) = ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) |
73 |
49 70 72
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( exp ‘ - ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) = ( exp ‘ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) |
74 |
46 73
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( exp ‘ ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) / ( ( exp ‘ - ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) / ( exp ‘ ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) |
75 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
76 |
7 64 75
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · 𝐴 ) ∈ ℂ ) |
77 |
|
efcl |
⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
78 |
76 77
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) |
79 |
76
|
negcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - ( i · 𝐴 ) ∈ ℂ ) |
80 |
|
efcl |
⊢ ( - ( i · 𝐴 ) ∈ ℂ → ( exp ‘ - ( i · 𝐴 ) ) ∈ ℂ ) |
81 |
79 80
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ - ( i · 𝐴 ) ) ∈ ℂ ) |
82 |
|
efne0 |
⊢ ( - ( i · 𝐴 ) ∈ ℂ → ( exp ‘ - ( i · 𝐴 ) ) ≠ 0 ) |
83 |
79 82
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ - ( i · 𝐴 ) ) ≠ 0 ) |
84 |
78 81 26 83 1
|
divcan7d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( exp ‘ ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) / ( ( exp ‘ - ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) / ( exp ‘ - ( i · 𝐴 ) ) ) ) |
85 |
|
efsub |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ - ( i · 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) / ( exp ‘ - ( i · 𝐴 ) ) ) ) |
86 |
76 79 85
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) / ( exp ‘ - ( i · 𝐴 ) ) ) ) |
87 |
76 76
|
subnegd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) |
88 |
76
|
2timesd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) |
89 |
87 88
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) = ( 2 · ( i · 𝐴 ) ) ) |
90 |
89
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) ) = ( exp ‘ ( 2 · ( i · 𝐴 ) ) ) ) |
91 |
84 86 90
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( exp ‘ ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) / ( ( exp ‘ - ( i · 𝐴 ) ) / ( cos ‘ 𝐴 ) ) ) = ( exp ‘ ( 2 · ( i · 𝐴 ) ) ) ) |
92 |
24 74 91
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( exp ‘ ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) = ( exp ‘ ( 2 · ( i · 𝐴 ) ) ) ) |
93 |
92
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( log ‘ ( exp ‘ ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) = ( log ‘ ( exp ‘ ( 2 · ( i · 𝐴 ) ) ) ) ) |
94 |
64
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → 𝐴 ∈ ℂ ) |
95 |
94
|
renegd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) ) |
96 |
94
|
recld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
97 |
96
|
renegcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → - ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
98 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ 𝐴 ) < 0 ) |
99 |
96
|
lt0neg1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ( ℜ ‘ 𝐴 ) < 0 ↔ 0 < - ( ℜ ‘ 𝐴 ) ) ) |
100 |
98 99
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → 0 < - ( ℜ ‘ 𝐴 ) ) |
101 |
|
eliooord |
⊢ ( ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) → ( - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
102 |
101
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
103 |
102
|
simpld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ) |
104 |
103
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ) |
105 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
106 |
|
ltnegcon1 |
⊢ ( ( ( π / 2 ) ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ↔ - ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
107 |
105 96 106
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( - ( π / 2 ) < ( ℜ ‘ 𝐴 ) ↔ - ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
108 |
104 107
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → - ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) |
109 |
|
0xr |
⊢ 0 ∈ ℝ* |
110 |
105
|
rexri |
⊢ ( π / 2 ) ∈ ℝ* |
111 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( - ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( - ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < - ( ℜ ‘ 𝐴 ) ∧ - ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) ) |
112 |
109 110 111
|
mp2an |
⊢ ( - ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( - ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < - ( ℜ ‘ 𝐴 ) ∧ - ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
113 |
97 100 108 112
|
syl3anbrc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → - ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
114 |
95 113
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ - 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
115 |
|
tanregt0 |
⊢ ( ( - 𝐴 ∈ ℂ ∧ ( ℜ ‘ - 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 < ( ℜ ‘ ( tan ‘ - 𝐴 ) ) ) |
116 |
51 114 115
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → 0 < ( ℜ ‘ ( tan ‘ - 𝐴 ) ) ) |
117 |
|
tanneg |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ - 𝐴 ) = - ( tan ‘ 𝐴 ) ) |
118 |
1 117
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( tan ‘ - 𝐴 ) = - ( tan ‘ 𝐴 ) ) |
119 |
118
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( tan ‘ - 𝐴 ) = - ( tan ‘ 𝐴 ) ) |
120 |
119
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ ( tan ‘ - 𝐴 ) ) = ( ℜ ‘ - ( tan ‘ 𝐴 ) ) ) |
121 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( tan ‘ 𝐴 ) ∈ ℂ ) |
122 |
121
|
renegd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ - ( tan ‘ 𝐴 ) ) = - ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) |
123 |
120 122
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ ( tan ‘ - 𝐴 ) ) = - ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) |
124 |
116 123
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → 0 < - ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) |
125 |
9
|
recld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ ( tan ‘ 𝐴 ) ) ∈ ℝ ) |
126 |
125
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ ( tan ‘ 𝐴 ) ) ∈ ℝ ) |
127 |
126
|
lt0neg1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ( ℜ ‘ ( tan ‘ 𝐴 ) ) < 0 ↔ 0 < - ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) ) |
128 |
124 127
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ ( tan ‘ 𝐴 ) ) < 0 ) |
129 |
128
|
lt0ne0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ℜ ‘ ( tan ‘ 𝐴 ) ) ≠ 0 ) |
130 |
|
atanlogsub |
⊢ ( ( ( tan ‘ 𝐴 ) ∈ dom arctan ∧ ( ℜ ‘ ( tan ‘ 𝐴 ) ) ≠ 0 ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log ) |
131 |
3 129 130
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) < 0 ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log ) |
132 |
|
1re |
⊢ 1 ∈ ℝ |
133 |
|
ioossre |
⊢ ( - 1 (,) 1 ) ⊆ ℝ |
134 |
7
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → i ∈ ℂ ) |
135 |
11
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · ( tan ‘ 𝐴 ) ) ∈ ℂ ) |
136 |
|
ine0 |
⊢ i ≠ 0 |
137 |
136
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → i ≠ 0 ) |
138 |
|
ixi |
⊢ ( i · i ) = - 1 |
139 |
138
|
oveq1i |
⊢ ( ( i · i ) · ( tan ‘ 𝐴 ) ) = ( - 1 · ( tan ‘ 𝐴 ) ) |
140 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( tan ‘ 𝐴 ) ∈ ℂ ) |
141 |
140
|
mulm1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - 1 · ( tan ‘ 𝐴 ) ) = - ( tan ‘ 𝐴 ) ) |
142 |
118
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( tan ‘ - 𝐴 ) = - ( tan ‘ 𝐴 ) ) |
143 |
141 142
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - 1 · ( tan ‘ 𝐴 ) ) = ( tan ‘ - 𝐴 ) ) |
144 |
139 143
|
syl5eq |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · i ) · ( tan ‘ 𝐴 ) ) = ( tan ‘ - 𝐴 ) ) |
145 |
134 134 140
|
mulassd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · i ) · ( tan ‘ 𝐴 ) ) = ( i · ( i · ( tan ‘ 𝐴 ) ) ) ) |
146 |
138
|
oveq1i |
⊢ ( ( i · i ) · 𝐴 ) = ( - 1 · 𝐴 ) |
147 |
64
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℂ ) |
148 |
147
|
mulm1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
149 |
146 148
|
syl5eq |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · i ) · 𝐴 ) = - 𝐴 ) |
150 |
134 134 147
|
mulassd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · i ) · 𝐴 ) = ( i · ( i · 𝐴 ) ) ) |
151 |
149 150
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → - 𝐴 = ( i · ( i · 𝐴 ) ) ) |
152 |
151
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( tan ‘ - 𝐴 ) = ( tan ‘ ( i · ( i · 𝐴 ) ) ) ) |
153 |
144 145 152
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · ( i · ( tan ‘ 𝐴 ) ) ) = ( tan ‘ ( i · ( i · 𝐴 ) ) ) ) |
154 |
134 135 137 153
|
mvllmuld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · ( tan ‘ 𝐴 ) ) = ( ( tan ‘ ( i · ( i · 𝐴 ) ) ) / i ) ) |
155 |
76
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · 𝐴 ) ∈ ℂ ) |
156 |
|
reim |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) |
157 |
156
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ 𝐴 ) = ( ℑ ‘ ( i · 𝐴 ) ) ) |
158 |
157
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ℜ ‘ 𝐴 ) = 0 ↔ ( ℑ ‘ ( i · 𝐴 ) ) = 0 ) ) |
159 |
158
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ℑ ‘ ( i · 𝐴 ) ) = 0 ) |
160 |
155 159
|
reim0bd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · 𝐴 ) ∈ ℝ ) |
161 |
|
tanhbnd |
⊢ ( ( i · 𝐴 ) ∈ ℝ → ( ( tan ‘ ( i · ( i · 𝐴 ) ) ) / i ) ∈ ( - 1 (,) 1 ) ) |
162 |
160 161
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( tan ‘ ( i · ( i · 𝐴 ) ) ) / i ) ∈ ( - 1 (,) 1 ) ) |
163 |
154 162
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · ( tan ‘ 𝐴 ) ) ∈ ( - 1 (,) 1 ) ) |
164 |
133 163
|
sselid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · ( tan ‘ 𝐴 ) ) ∈ ℝ ) |
165 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ ( i · ( tan ‘ 𝐴 ) ) ∈ ℝ ) → ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℝ ) |
166 |
132 164 165
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℝ ) |
167 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
168 |
|
eliooord |
⊢ ( ( i · ( tan ‘ 𝐴 ) ) ∈ ( - 1 (,) 1 ) → ( - 1 < ( i · ( tan ‘ 𝐴 ) ) ∧ ( i · ( tan ‘ 𝐴 ) ) < 1 ) ) |
169 |
163 168
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( - 1 < ( i · ( tan ‘ 𝐴 ) ) ∧ ( i · ( tan ‘ 𝐴 ) ) < 1 ) ) |
170 |
169
|
simpld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → - 1 < ( i · ( tan ‘ 𝐴 ) ) ) |
171 |
167 170
|
eqbrtrrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( 0 − 1 ) < ( i · ( tan ‘ 𝐴 ) ) ) |
172 |
|
0red |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → 0 ∈ ℝ ) |
173 |
132
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → 1 ∈ ℝ ) |
174 |
172 173 164
|
ltsubadd2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( 0 − 1 ) < ( i · ( tan ‘ 𝐴 ) ) ↔ 0 < ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) |
175 |
171 174
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → 0 < ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) |
176 |
166 175
|
elrpd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
177 |
176
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
178 |
169
|
simprd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( i · ( tan ‘ 𝐴 ) ) < 1 ) |
179 |
|
difrp |
⊢ ( ( ( i · ( tan ‘ 𝐴 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( i · ( tan ‘ 𝐴 ) ) < 1 ↔ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℝ+ ) ) |
180 |
164 132 179
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( i · ( tan ‘ 𝐴 ) ) < 1 ↔ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℝ+ ) ) |
181 |
178 180
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
182 |
181
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
183 |
177 182
|
resubcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ℝ ) |
184 |
|
relogrn |
⊢ ( ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ℝ → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log ) |
185 |
183 184
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ ( ℜ ‘ 𝐴 ) = 0 ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log ) |
186 |
64
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
187 |
186
|
recld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
188 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ 𝐴 ) ) |
189 |
102
|
simprd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) |
190 |
189
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) |
191 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) ) |
192 |
109 110 191
|
mp2an |
⊢ ( ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ↔ ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℜ ‘ 𝐴 ) ∧ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
193 |
187 188 190 192
|
syl3anbrc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) |
194 |
|
tanregt0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( 0 (,) ( π / 2 ) ) ) → 0 < ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) |
195 |
64 193 194
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ ( tan ‘ 𝐴 ) ) ) |
196 |
195
|
gt0ne0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( tan ‘ 𝐴 ) ) ≠ 0 ) |
197 |
3 196 130
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log ) |
198 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
199 |
198
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
200 |
|
0re |
⊢ 0 ∈ ℝ |
201 |
|
lttri4 |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℜ ‘ 𝐴 ) < 0 ∨ ( ℜ ‘ 𝐴 ) = 0 ∨ 0 < ( ℜ ‘ 𝐴 ) ) ) |
202 |
199 200 201
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ℜ ‘ 𝐴 ) < 0 ∨ ( ℜ ‘ 𝐴 ) = 0 ∨ 0 < ( ℜ ‘ 𝐴 ) ) ) |
203 |
131 185 197 202
|
mpjao3dan |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log ) |
204 |
|
logef |
⊢ ( ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ∈ ran log → ( log ‘ ( exp ‘ ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) = ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) |
205 |
203 204
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( log ‘ ( exp ‘ ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) ) = ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) |
206 |
|
2cn |
⊢ 2 ∈ ℂ |
207 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 2 · ( i · 𝐴 ) ) ∈ ℂ ) |
208 |
206 76 207
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( i · 𝐴 ) ) ∈ ℂ ) |
209 |
|
picn |
⊢ π ∈ ℂ |
210 |
|
2ne0 |
⊢ 2 ≠ 0 |
211 |
|
divneg |
⊢ ( ( π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → - ( π / 2 ) = ( - π / 2 ) ) |
212 |
209 206 210 211
|
mp3an |
⊢ - ( π / 2 ) = ( - π / 2 ) |
213 |
212 103
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( - π / 2 ) < ( ℜ ‘ 𝐴 ) ) |
214 |
|
pire |
⊢ π ∈ ℝ |
215 |
214
|
renegcli |
⊢ - π ∈ ℝ |
216 |
215
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - π ∈ ℝ ) |
217 |
|
2re |
⊢ 2 ∈ ℝ |
218 |
217
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 2 ∈ ℝ ) |
219 |
|
2pos |
⊢ 0 < 2 |
220 |
219
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 0 < 2 ) |
221 |
|
ltdivmul |
⊢ ( ( - π ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( - π / 2 ) < ( ℜ ‘ 𝐴 ) ↔ - π < ( 2 · ( ℜ ‘ 𝐴 ) ) ) ) |
222 |
216 199 218 220 221
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( - π / 2 ) < ( ℜ ‘ 𝐴 ) ↔ - π < ( 2 · ( ℜ ‘ 𝐴 ) ) ) ) |
223 |
213 222
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - π < ( 2 · ( ℜ ‘ 𝐴 ) ) ) |
224 |
|
immul2 |
⊢ ( ( 2 ∈ ℝ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) = ( 2 · ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
225 |
217 76 224
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) = ( 2 · ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
226 |
157
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( ℜ ‘ 𝐴 ) ) = ( 2 · ( ℑ ‘ ( i · 𝐴 ) ) ) ) |
227 |
225 226
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) = ( 2 · ( ℜ ‘ 𝐴 ) ) ) |
228 |
223 227
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - π < ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) ) |
229 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( ℜ ‘ 𝐴 ) ∈ ℝ ) → ( 2 · ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
230 |
217 199 229
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( ℜ ‘ 𝐴 ) ) ∈ ℝ ) |
231 |
214
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → π ∈ ℝ ) |
232 |
|
ltmuldiv2 |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ π ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · ( ℜ ‘ 𝐴 ) ) < π ↔ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
233 |
199 231 218 220 232
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( 2 · ( ℜ ‘ 𝐴 ) ) < π ↔ ( ℜ ‘ 𝐴 ) < ( π / 2 ) ) ) |
234 |
189 233
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( ℜ ‘ 𝐴 ) ) < π ) |
235 |
230 231 234
|
ltled |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( ℜ ‘ 𝐴 ) ) ≤ π ) |
236 |
227 235
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) ≤ π ) |
237 |
|
ellogrn |
⊢ ( ( 2 · ( i · 𝐴 ) ) ∈ ran log ↔ ( ( 2 · ( i · 𝐴 ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) ∧ ( ℑ ‘ ( 2 · ( i · 𝐴 ) ) ) ≤ π ) ) |
238 |
208 228 236 237
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · ( i · 𝐴 ) ) ∈ ran log ) |
239 |
|
logef |
⊢ ( ( 2 · ( i · 𝐴 ) ) ∈ ran log → ( log ‘ ( exp ‘ ( 2 · ( i · 𝐴 ) ) ) ) = ( 2 · ( i · 𝐴 ) ) ) |
240 |
238 239
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( log ‘ ( exp ‘ ( 2 · ( i · 𝐴 ) ) ) ) = ( 2 · ( i · 𝐴 ) ) ) |
241 |
93 205 240
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) = ( 2 · ( i · 𝐴 ) ) ) |
242 |
241
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → - ( ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) ) = - ( 2 · ( i · 𝐴 ) ) ) |
243 |
22 242
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) = - ( 2 · ( i · 𝐴 ) ) ) |
244 |
243
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( tan ‘ 𝐴 ) ) ) ) − ( log ‘ ( 1 + ( i · ( tan ‘ 𝐴 ) ) ) ) ) ) = ( ( i / 2 ) · - ( 2 · ( i · 𝐴 ) ) ) ) |
245 |
|
halfcl |
⊢ ( i ∈ ℂ → ( i / 2 ) ∈ ℂ ) |
246 |
7 245
|
mp1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i / 2 ) ∈ ℂ ) |
247 |
206
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → 2 ∈ ℂ ) |
248 |
246 247 79
|
mulassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( i / 2 ) · 2 ) · - ( i · 𝐴 ) ) = ( ( i / 2 ) · ( 2 · - ( i · 𝐴 ) ) ) ) |
249 |
7 206 210
|
divcan1i |
⊢ ( ( i / 2 ) · 2 ) = i |
250 |
249
|
oveq1i |
⊢ ( ( ( i / 2 ) · 2 ) · - ( i · 𝐴 ) ) = ( i · - ( i · 𝐴 ) ) |
251 |
33 33 51
|
mulassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i · i ) · - 𝐴 ) = ( i · ( i · - 𝐴 ) ) ) |
252 |
138
|
oveq1i |
⊢ ( ( i · i ) · - 𝐴 ) = ( - 1 · - 𝐴 ) |
253 |
|
mul2neg |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - 1 · - 𝐴 ) = ( 1 · 𝐴 ) ) |
254 |
6 64 253
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( - 1 · - 𝐴 ) = ( 1 · 𝐴 ) ) |
255 |
|
mulid2 |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
256 |
255
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
257 |
254 256
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( - 1 · - 𝐴 ) = 𝐴 ) |
258 |
252 257
|
syl5eq |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i · i ) · - 𝐴 ) = 𝐴 ) |
259 |
66
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · ( i · - 𝐴 ) ) = ( i · - ( i · 𝐴 ) ) ) |
260 |
251 258 259
|
3eqtr3rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( i · - ( i · 𝐴 ) ) = 𝐴 ) |
261 |
250 260
|
syl5eq |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( ( i / 2 ) · 2 ) · - ( i · 𝐴 ) ) = 𝐴 ) |
262 |
|
mulneg2 |
⊢ ( ( 2 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 2 · - ( i · 𝐴 ) ) = - ( 2 · ( i · 𝐴 ) ) ) |
263 |
206 76 262
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( 2 · - ( i · 𝐴 ) ) = - ( 2 · ( i · 𝐴 ) ) ) |
264 |
263
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i / 2 ) · ( 2 · - ( i · 𝐴 ) ) ) = ( ( i / 2 ) · - ( 2 · ( i · 𝐴 ) ) ) ) |
265 |
248 261 264
|
3eqtr3rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( ( i / 2 ) · - ( 2 · ( i · 𝐴 ) ) ) = 𝐴 ) |
266 |
5 244 265
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) → ( arctan ‘ ( tan ‘ 𝐴 ) ) = 𝐴 ) |