Step |
Hyp |
Ref |
Expression |
1 |
|
atantayl3.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
2 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
3 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
4 |
|
nn0mulcl |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
5 |
2 3 4
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
6 |
5
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℂ ) |
7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
8 |
|
pncan |
⊢ ( ( ( 2 · 𝑛 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
9 |
6 7 8
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
10 |
9
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) = ( ( 2 · 𝑛 ) / 2 ) ) |
11 |
|
nn0cn |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℂ ) |
13 |
|
2cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 2 ∈ ℂ ) |
14 |
|
2ne0 |
⊢ 2 ≠ 0 |
15 |
14
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 2 ≠ 0 ) |
16 |
12 13 15
|
divcan3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) |
17 |
10 16
|
eqtr2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 = ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) |
18 |
17
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) = ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) ) |
19 |
18
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
20 |
19
|
mpteq2dva |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
21 |
1 20
|
syl5eq |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) |
22 |
21
|
seqeq3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , 𝐹 ) = seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ) |
23 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ) |
24 |
23
|
atantayl2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) ) |
25 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
26 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) ∈ ℂ ) |
27 |
25 3 26
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ 𝑛 ) ∈ ℂ ) |
28 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
29 |
|
peano2nn0 |
⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 ) |
30 |
5 29
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ0 ) |
31 |
28 30
|
expcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
32 |
|
nn0p1nn |
⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
33 |
5 32
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
34 |
33
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℂ ) |
35 |
33
|
nnne0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 2 · 𝑛 ) + 1 ) ≠ 0 ) |
36 |
31 34 35
|
divcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℂ ) |
37 |
27 36
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 ↑ 𝑛 ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
38 |
19 37
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ∈ ℂ ) |
39 |
|
oveq1 |
⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( 𝑘 − 1 ) = ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) ) |
40 |
39
|
oveq1d |
⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( ( 𝑘 − 1 ) / 2 ) = ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) |
41 |
40
|
oveq2d |
⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) = ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) ) |
42 |
|
oveq2 |
⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) ) |
43 |
|
id |
⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → 𝑘 = ( ( 2 · 𝑛 ) + 1 ) ) |
44 |
42 43
|
oveq12d |
⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) = ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) |
45 |
41 44
|
oveq12d |
⊢ ( 𝑘 = ( ( 2 · 𝑛 ) + 1 ) → ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) = ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
46 |
38 45
|
iserodd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ if ( 2 ∥ 𝑘 , 0 , ( ( - 1 ↑ ( ( 𝑘 − 1 ) / 2 ) ) · ( ( 𝐴 ↑ 𝑘 ) / 𝑘 ) ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) ) ) |
47 |
24 46
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ ( ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) / 2 ) ) · ( ( 𝐴 ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ⇝ ( arctan ‘ 𝐴 ) ) |
48 |
22 47
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , 𝐹 ) ⇝ ( arctan ‘ 𝐴 ) ) |