Metamath Proof Explorer


Theorem atbtwn

Description: Property of a 3rd atom R on a line P .\/ Q intersecting element X at P . (Contributed by NM, 30-Jul-2012)

Ref Expression
Hypotheses atbtwn.b 𝐵 = ( Base ‘ 𝐾 )
atbtwn.l = ( le ‘ 𝐾 )
atbtwn.j = ( join ‘ 𝐾 )
atbtwn.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atbtwn ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅𝑃 ↔ ¬ 𝑅 𝑋 ) )

Proof

Step Hyp Ref Expression
1 atbtwn.b 𝐵 = ( Base ‘ 𝐾 )
2 atbtwn.l = ( le ‘ 𝐾 )
3 atbtwn.j = ( join ‘ 𝐾 )
4 atbtwn.a 𝐴 = ( Atoms ‘ 𝐾 )
5 simpl33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝑅 ( 𝑃 𝑄 ) )
6 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝑅 𝑋 )
7 simpl11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝐾 ∈ HL )
8 7 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝐾 ∈ Lat )
9 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝑅𝐴 )
10 1 4 atbase ( 𝑅𝐴𝑅𝐵 )
11 9 10 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝑅𝐵 )
12 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) )
13 1 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
14 12 13 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
15 simpl2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝑋𝐵 )
16 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
17 1 2 16 latlem12 ( ( 𝐾 ∈ Lat ∧ ( 𝑅𝐵 ∧ ( 𝑃 𝑄 ) ∈ 𝐵𝑋𝐵 ) ) → ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑅 𝑋 ) ↔ 𝑅 ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ) )
18 8 11 14 15 17 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑅 𝑋 ) ↔ 𝑅 ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ) )
19 5 6 18 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝑅 ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) )
20 simpl12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝑃𝐴 )
21 simpl13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝑄𝐴 )
22 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝑃 𝑋 )
23 simpl32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → ¬ 𝑄 𝑋 )
24 1 2 3 16 4 2atjm ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) = 𝑃 )
25 7 20 21 15 22 23 24 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → ( ( 𝑃 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) = 𝑃 )
26 19 25 breqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝑅 𝑃 )
27 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
28 7 27 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝐾 ∈ AtLat )
29 2 4 atcmp ( ( 𝐾 ∈ AtLat ∧ 𝑅𝐴𝑃𝐴 ) → ( 𝑅 𝑃𝑅 = 𝑃 ) )
30 28 9 20 29 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → ( 𝑅 𝑃𝑅 = 𝑃 ) )
31 26 30 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) ∧ 𝑅 𝑋 ) → 𝑅 = 𝑃 )
32 31 ex ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅 𝑋𝑅 = 𝑃 ) )
33 32 necon3ad ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅𝑃 → ¬ 𝑅 𝑋 ) )
34 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) → 𝑃 𝑋 )
35 nbrne2 ( ( 𝑃 𝑋 ∧ ¬ 𝑅 𝑋 ) → 𝑃𝑅 )
36 35 necomd ( ( 𝑃 𝑋 ∧ ¬ 𝑅 𝑋 ) → 𝑅𝑃 )
37 36 ex ( 𝑃 𝑋 → ( ¬ 𝑅 𝑋𝑅𝑃 ) )
38 34 37 syl ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) → ( ¬ 𝑅 𝑋𝑅𝑃 ) )
39 33 38 impbid ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅𝑃 ↔ ¬ 𝑅 𝑋 ) )