Step |
Hyp |
Ref |
Expression |
1 |
|
atbtwn.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
atbtwn.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
atbtwn.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
atbtwn.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
simpl33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
6 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 ≤ 𝑋 ) |
7 |
|
simpl11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝐾 ∈ HL ) |
8 |
7
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝐾 ∈ Lat ) |
9 |
|
simpl2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 ∈ 𝐴 ) |
10 |
1 4
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵 ) |
11 |
9 10
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 ∈ 𝐵 ) |
12 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
13 |
1 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
14 |
12 13
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
15 |
|
simpl2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) |
16 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
17 |
1 2 16
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑅 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ 𝑋 ) ↔ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ) ) |
18 |
8 11 14 15 17
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ 𝑋 ) ↔ 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ) ) |
19 |
5 6 18
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 ≤ ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) ) |
20 |
|
simpl12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑃 ∈ 𝐴 ) |
21 |
|
simpl13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑄 ∈ 𝐴 ) |
22 |
|
simpl31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑃 ≤ 𝑋 ) |
23 |
|
simpl32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → ¬ 𝑄 ≤ 𝑋 ) |
24 |
1 2 3 16 4
|
2atjm |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) = 𝑃 ) |
25 |
7 20 21 15 22 23 24
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → ( ( 𝑃 ∨ 𝑄 ) ( meet ‘ 𝐾 ) 𝑋 ) = 𝑃 ) |
26 |
19 25
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 ≤ 𝑃 ) |
27 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
28 |
7 27
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝐾 ∈ AtLat ) |
29 |
2 4
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑅 ≤ 𝑃 ↔ 𝑅 = 𝑃 ) ) |
30 |
28 9 20 29
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → ( 𝑅 ≤ 𝑃 ↔ 𝑅 = 𝑃 ) ) |
31 |
26 30
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ 𝑅 ≤ 𝑋 ) → 𝑅 = 𝑃 ) |
32 |
31
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≤ 𝑋 → 𝑅 = 𝑃 ) ) |
33 |
32
|
necon3ad |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≠ 𝑃 → ¬ 𝑅 ≤ 𝑋 ) ) |
34 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≤ 𝑋 ) |
35 |
|
nbrne2 |
⊢ ( ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑅 ≤ 𝑋 ) → 𝑃 ≠ 𝑅 ) |
36 |
35
|
necomd |
⊢ ( ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑅 ≤ 𝑋 ) → 𝑅 ≠ 𝑃 ) |
37 |
36
|
ex |
⊢ ( 𝑃 ≤ 𝑋 → ( ¬ 𝑅 ≤ 𝑋 → 𝑅 ≠ 𝑃 ) ) |
38 |
34 37
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ¬ 𝑅 ≤ 𝑋 → 𝑅 ≠ 𝑃 ) ) |
39 |
33 38
|
impbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≠ 𝑃 ↔ ¬ 𝑅 ≤ 𝑋 ) ) |