| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atbtwn.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
atbtwn.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
atbtwn.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
atbtwn.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≤ 𝑋 ) |
| 6 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ¬ 𝑄 ≤ 𝑋 ) |
| 7 |
|
nbrne2 |
⊢ ( ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) → 𝑃 ≠ 𝑄 ) |
| 8 |
5 6 7
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≠ 𝑄 ) |
| 9 |
2 3 4
|
hlsupr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 10 |
8 9
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 11 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑟 ≠ 𝑄 ) |
| 12 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑟 ≠ 𝑃 ) |
| 13 |
|
simp1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
| 14 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑟 ∈ 𝐴 ) |
| 15 |
|
simp1r1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 16 |
|
simp1r2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≤ 𝑋 ) |
| 17 |
|
simp1r3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑄 ≤ 𝑋 ) |
| 18 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 19 |
1 2 3 4
|
atbtwn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑟 ≠ 𝑃 ↔ ¬ 𝑟 ≤ 𝑋 ) ) |
| 20 |
13 14 15 16 17 18 19
|
syl123anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑟 ≠ 𝑃 ↔ ¬ 𝑟 ≤ 𝑋 ) ) |
| 21 |
12 20
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑟 ≤ 𝑋 ) |
| 22 |
|
simp1l1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
| 23 |
|
simp1l2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
| 24 |
|
simp1l3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
| 25 |
2 3 4
|
hlatexch2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑟 ≠ 𝑄 ) → ( 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) → 𝑃 ≤ ( 𝑟 ∨ 𝑄 ) ) ) |
| 26 |
22 14 23 24 11 25
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) → 𝑃 ≤ ( 𝑟 ∨ 𝑄 ) ) ) |
| 27 |
18 26
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≤ ( 𝑟 ∨ 𝑄 ) ) |
| 28 |
3 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑟 ) = ( 𝑟 ∨ 𝑄 ) ) |
| 29 |
22 24 14 28
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑄 ∨ 𝑟 ) = ( 𝑟 ∨ 𝑄 ) ) |
| 30 |
27 29
|
breqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) |
| 31 |
11 21 30
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ∧ 𝑟 ∈ 𝐴 ∧ ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
| 32 |
31
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑟 ∈ 𝐴 → ( ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
| 33 |
32
|
reximdvai |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ ( 𝑃 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
| 34 |
10 33
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≠ 𝑄 ∧ ¬ 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |