Metamath Proof Explorer


Theorem atbtwnex

Description: Given atoms P in X and Q not in X , there exists an atom r not in X such that the line Q .\/ r intersects X at P . (Contributed by NM, 1-Aug-2012)

Ref Expression
Hypotheses atbtwn.b 𝐵 = ( Base ‘ 𝐾 )
atbtwn.l = ( le ‘ 𝐾 )
atbtwn.j = ( join ‘ 𝐾 )
atbtwn.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atbtwnex ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ∃ 𝑟𝐴 ( 𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 ( 𝑄 𝑟 ) ) )

Proof

Step Hyp Ref Expression
1 atbtwn.b 𝐵 = ( Base ‘ 𝐾 )
2 atbtwn.l = ( le ‘ 𝐾 )
3 atbtwn.j = ( join ‘ 𝐾 )
4 atbtwn.a 𝐴 = ( Atoms ‘ 𝐾 )
5 simpr2 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → 𝑃 𝑋 )
6 simpr3 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ¬ 𝑄 𝑋 )
7 nbrne2 ( ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) → 𝑃𝑄 )
8 5 6 7 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → 𝑃𝑄 )
9 2 3 4 hlsupr ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → ∃ 𝑟𝐴 ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) )
10 8 9 syldan ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ∃ 𝑟𝐴 ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) )
11 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → 𝑟𝑄 )
12 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → 𝑟𝑃 )
13 simp1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) )
14 simp2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → 𝑟𝐴 )
15 simp1r1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → 𝑋𝐵 )
16 simp1r2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → 𝑃 𝑋 )
17 simp1r3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → ¬ 𝑄 𝑋 )
18 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → 𝑟 ( 𝑃 𝑄 ) )
19 1 2 3 4 atbtwn ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑟𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑟 ( 𝑃 𝑄 ) ) ) → ( 𝑟𝑃 ↔ ¬ 𝑟 𝑋 ) )
20 13 14 15 16 17 18 19 syl123anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → ( 𝑟𝑃 ↔ ¬ 𝑟 𝑋 ) )
21 12 20 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → ¬ 𝑟 𝑋 )
22 simp1l1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
23 simp1l2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
24 simp1l3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → 𝑄𝐴 )
25 2 3 4 hlatexch2 ( ( 𝐾 ∈ HL ∧ ( 𝑟𝐴𝑃𝐴𝑄𝐴 ) ∧ 𝑟𝑄 ) → ( 𝑟 ( 𝑃 𝑄 ) → 𝑃 ( 𝑟 𝑄 ) ) )
26 22 14 23 24 11 25 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → ( 𝑟 ( 𝑃 𝑄 ) → 𝑃 ( 𝑟 𝑄 ) ) )
27 18 26 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → 𝑃 ( 𝑟 𝑄 ) )
28 3 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑟𝐴 ) → ( 𝑄 𝑟 ) = ( 𝑟 𝑄 ) )
29 22 24 14 28 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → ( 𝑄 𝑟 ) = ( 𝑟 𝑄 ) )
30 27 29 breqtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → 𝑃 ( 𝑄 𝑟 ) )
31 11 21 30 3jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ∧ 𝑟𝐴 ∧ ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) ) → ( 𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 ( 𝑄 𝑟 ) ) )
32 31 3exp ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ( 𝑟𝐴 → ( ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) → ( 𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 ( 𝑄 𝑟 ) ) ) ) )
33 32 reximdvai ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ( ∃ 𝑟𝐴 ( 𝑟𝑃𝑟𝑄𝑟 ( 𝑃 𝑄 ) ) → ∃ 𝑟𝐴 ( 𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 ( 𝑄 𝑟 ) ) ) )
34 10 33 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑋𝐵𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) → ∃ 𝑟𝐴 ( 𝑟𝑄 ∧ ¬ 𝑟 𝑋𝑃 ( 𝑄 𝑟 ) ) )