Metamath Proof Explorer


Theorem atcvat2

Description: A Hilbert lattice element covered by the join of two distinct atoms is an atom. (Contributed by NM, 29-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atcvat2 ( ( 𝐴C𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ¬ 𝐵 = 𝐶𝐴 ( 𝐵 𝐶 ) ) → 𝐴 ∈ HAtoms ) )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 ( 𝐵 𝐶 ) ↔ if ( 𝐴C , 𝐴 , 0 ) ⋖ ( 𝐵 𝐶 ) ) )
2 1 anbi2d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( ¬ 𝐵 = 𝐶𝐴 ( 𝐵 𝐶 ) ) ↔ ( ¬ 𝐵 = 𝐶 ∧ if ( 𝐴C , 𝐴 , 0 ) ⋖ ( 𝐵 𝐶 ) ) ) )
3 eleq1 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 ∈ HAtoms ↔ if ( 𝐴C , 𝐴 , 0 ) ∈ HAtoms ) )
4 2 3 imbi12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( ( ¬ 𝐵 = 𝐶𝐴 ( 𝐵 𝐶 ) ) → 𝐴 ∈ HAtoms ) ↔ ( ( ¬ 𝐵 = 𝐶 ∧ if ( 𝐴C , 𝐴 , 0 ) ⋖ ( 𝐵 𝐶 ) ) → if ( 𝐴C , 𝐴 , 0 ) ∈ HAtoms ) ) )
5 4 imbi2d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ¬ 𝐵 = 𝐶𝐴 ( 𝐵 𝐶 ) ) → 𝐴 ∈ HAtoms ) ) ↔ ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ¬ 𝐵 = 𝐶 ∧ if ( 𝐴C , 𝐴 , 0 ) ⋖ ( 𝐵 𝐶 ) ) → if ( 𝐴C , 𝐴 , 0 ) ∈ HAtoms ) ) ) )
6 h0elch 0C
7 6 elimel if ( 𝐴C , 𝐴 , 0 ) ∈ C
8 7 atcvat2i ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ¬ 𝐵 = 𝐶 ∧ if ( 𝐴C , 𝐴 , 0 ) ⋖ ( 𝐵 𝐶 ) ) → if ( 𝐴C , 𝐴 , 0 ) ∈ HAtoms ) )
9 5 8 dedth ( 𝐴C → ( ( 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ¬ 𝐵 = 𝐶𝐴 ( 𝐵 𝐶 ) ) → 𝐴 ∈ HAtoms ) ) )
10 9 3impib ( ( 𝐴C𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms ) → ( ( ¬ 𝐵 = 𝐶𝐴 ( 𝐵 𝐶 ) ) → 𝐴 ∈ HAtoms ) )