Metamath Proof Explorer


Theorem atcvr0

Description: An atom covers zero. ( atcv0 analog.) (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses atomcvr0.z 0 = ( 0. ‘ 𝐾 )
atomcvr0.c 𝐶 = ( ⋖ ‘ 𝐾 )
atomcvr0.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atcvr0 ( ( 𝐾𝐷𝑃𝐴 ) → 0 𝐶 𝑃 )

Proof

Step Hyp Ref Expression
1 atomcvr0.z 0 = ( 0. ‘ 𝐾 )
2 atomcvr0.c 𝐶 = ( ⋖ ‘ 𝐾 )
3 atomcvr0.a 𝐴 = ( Atoms ‘ 𝐾 )
4 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
5 4 1 2 3 isat ( 𝐾𝐷 → ( 𝑃𝐴 ↔ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 0 𝐶 𝑃 ) ) )
6 5 simplbda ( ( 𝐾𝐷𝑃𝐴 ) → 0 𝐶 𝑃 )