Description: An atom covers zero. ( atcv0 analog.) (Contributed by NM, 4-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | atomcvr0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
atomcvr0.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
atomcvr0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
Assertion | atcvr0 | ⊢ ( ( 𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐴 ) → 0 𝐶 𝑃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atomcvr0.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
2 | atomcvr0.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
3 | atomcvr0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
4 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
5 | 4 1 2 3 | isat | ⊢ ( 𝐾 ∈ 𝐷 → ( 𝑃 ∈ 𝐴 ↔ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 0 𝐶 𝑃 ) ) ) |
6 | 5 | simplbda | ⊢ ( ( 𝐾 ∈ 𝐷 ∧ 𝑃 ∈ 𝐴 ) → 0 𝐶 𝑃 ) |