| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atcvreq0.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							atcvreq0.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							atcvreq0.z | 
							⊢  0   =  ( 0. ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							atcvreq0.c | 
							⊢ 𝐶  =  (  ⋖  ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							atcvreq0.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								1 6 3
							 | 
							atl0le | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵 )  →   0  ( le ‘ 𝐾 ) 𝑋 )  | 
						
						
							| 8 | 
							
								7
							 | 
							3adant3 | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →   0  ( le ‘ 𝐾 ) 𝑋 )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  ∧  𝑋 𝐶 𝑃 )  →   0  ( le ‘ 𝐾 ) 𝑋 )  | 
						
						
							| 10 | 
							
								1 5
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( lt ‘ 𝐾 )  =  ( lt ‘ 𝐾 )  | 
						
						
							| 12 | 
							
								1 11 4
							 | 
							cvrlt | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐵 )  ∧  𝑋 𝐶 𝑃 )  →  𝑋 ( lt ‘ 𝐾 ) 𝑃 )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							syl3anl3 | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  ∧  𝑋 𝐶 𝑃 )  →  𝑋 ( lt ‘ 𝐾 ) 𝑃 )  | 
						
						
							| 14 | 
							
								
							 | 
							atlpos | 
							⊢ ( 𝐾  ∈  AtLat  →  𝐾  ∈  Poset )  | 
						
						
							| 15 | 
							
								14
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  𝐾  ∈  Poset )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  ∧  𝑋 𝐶 𝑃 )  →  𝐾  ∈  Poset )  | 
						
						
							| 17 | 
							
								1 3
							 | 
							atl0cl | 
							⊢ ( 𝐾  ∈  AtLat  →   0   ∈  𝐵 )  | 
						
						
							| 18 | 
							
								17
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →   0   ∈  𝐵 )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  ∧  𝑋 𝐶 𝑃 )  →   0   ∈  𝐵 )  | 
						
						
							| 20 | 
							
								10
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  𝑃  ∈  𝐵 )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  ∧  𝑋 𝐶 𝑃 )  →  𝑃  ∈  𝐵 )  | 
						
						
							| 22 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  ∧  𝑋 𝐶 𝑃 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 23 | 
							
								3 4 5
							 | 
							atcvr0 | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴 )  →   0  𝐶 𝑃 )  | 
						
						
							| 24 | 
							
								23
							 | 
							3adant2 | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →   0  𝐶 𝑃 )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  ∧  𝑋 𝐶 𝑃 )  →   0  𝐶 𝑃 )  | 
						
						
							| 26 | 
							
								1 6 11 4
							 | 
							cvrnbtwn3 | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  (  0   ∈  𝐵  ∧  𝑃  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  ∧   0  𝐶 𝑃 )  →  ( (  0  ( le ‘ 𝐾 ) 𝑋  ∧  𝑋 ( lt ‘ 𝐾 ) 𝑃 )  ↔   0   =  𝑋 ) )  | 
						
						
							| 27 | 
							
								16 19 21 22 25 26
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  ∧  𝑋 𝐶 𝑃 )  →  ( (  0  ( le ‘ 𝐾 ) 𝑋  ∧  𝑋 ( lt ‘ 𝐾 ) 𝑃 )  ↔   0   =  𝑋 ) )  | 
						
						
							| 28 | 
							
								9 13 27
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  ∧  𝑋 𝐶 𝑃 )  →   0   =  𝑋 )  | 
						
						
							| 29 | 
							
								28
							 | 
							eqcomd | 
							⊢ ( ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  ∧  𝑋 𝐶 𝑃 )  →  𝑋  =   0  )  | 
						
						
							| 30 | 
							
								29
							 | 
							ex | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( 𝑋 𝐶 𝑃  →  𝑋  =   0  ) )  | 
						
						
							| 31 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑋  =   0   →  ( 𝑋 𝐶 𝑃  ↔   0  𝐶 𝑃 ) )  | 
						
						
							| 32 | 
							
								24 31
							 | 
							syl5ibrcom | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( 𝑋  =   0   →  𝑋 𝐶 𝑃 ) )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							impbid | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( 𝑋 𝐶 𝑃  ↔  𝑋  =   0  ) )  |