Step |
Hyp |
Ref |
Expression |
1 |
|
cvp |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms ) → ( ( 𝐵 ∩ 𝐴 ) = 0ℋ ↔ 𝐵 ⋖ℋ ( 𝐵 ∨ℋ 𝐴 ) ) ) |
2 |
|
atelch |
⊢ ( 𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) |
3 |
|
chjcom |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
4 |
2 3
|
sylan2 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms ) → ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
5 |
4
|
breq2d |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms ) → ( 𝐵 ⋖ℋ ( 𝐵 ∨ℋ 𝐴 ) ↔ 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
6 |
1 5
|
bitrd |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms ) → ( ( 𝐵 ∩ 𝐴 ) = 0ℋ ↔ 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
7 |
6
|
ancoms |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐵 ∩ 𝐴 ) = 0ℋ ↔ 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
8 |
|
cvdmd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) ) → 𝐴 𝑀ℋ* 𝐵 ) |
9 |
8
|
3expia |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 𝑀ℋ* 𝐵 ) ) |
10 |
2 9
|
sylan |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( 𝐵 ⋖ℋ ( 𝐴 ∨ℋ 𝐵 ) → 𝐴 𝑀ℋ* 𝐵 ) ) |
11 |
7 10
|
sylbid |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐵 ∩ 𝐴 ) = 0ℋ → 𝐴 𝑀ℋ* 𝐵 ) ) |
12 |
|
atnssm0 |
⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms ) → ( ¬ 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝐴 ) = 0ℋ ) ) |
13 |
12
|
ancoms |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( ¬ 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝐴 ) = 0ℋ ) ) |
14 |
13
|
con1bid |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( ¬ ( 𝐵 ∩ 𝐴 ) = 0ℋ ↔ 𝐴 ⊆ 𝐵 ) ) |
15 |
|
ssdmd1 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 𝑀ℋ* 𝐵 ) |
16 |
15
|
3expia |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 → 𝐴 𝑀ℋ* 𝐵 ) ) |
17 |
2 16
|
sylan |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 → 𝐴 𝑀ℋ* 𝐵 ) ) |
18 |
14 17
|
sylbid |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ( ¬ ( 𝐵 ∩ 𝐴 ) = 0ℋ → 𝐴 𝑀ℋ* 𝐵 ) ) |
19 |
11 18
|
pm2.61d |
⊢ ( ( 𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ* 𝐵 ) |