Metamath Proof Explorer


Theorem atelch

Description: An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atelch ( 𝐴 ∈ HAtoms → 𝐴C )

Proof

Step Hyp Ref Expression
1 atssch HAtoms ⊆ C
2 1 sseli ( 𝐴 ∈ HAtoms → 𝐴C )