Metamath Proof Explorer


Theorem atex

Description: At least one atom exists. (Contributed by NM, 15-Jul-2012)

Ref Expression
Hypothesis atex.1 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atex ( 𝐾 ∈ HL → 𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 atex.1 𝐴 = ( Atoms ‘ 𝐾 )
2 1 hl2at ( 𝐾 ∈ HL → ∃ 𝑝𝐴𝑞𝐴 𝑝𝑞 )
3 df-rex ( ∃ 𝑝𝐴𝑞𝐴 𝑝𝑞 ↔ ∃ 𝑝 ( 𝑝𝐴 ∧ ∃ 𝑞𝐴 𝑝𝑞 ) )
4 exsimpl ( ∃ 𝑝 ( 𝑝𝐴 ∧ ∃ 𝑞𝐴 𝑝𝑞 ) → ∃ 𝑝 𝑝𝐴 )
5 3 4 sylbi ( ∃ 𝑝𝐴𝑞𝐴 𝑝𝑞 → ∃ 𝑝 𝑝𝐴 )
6 2 5 syl ( 𝐾 ∈ HL → ∃ 𝑝 𝑝𝐴 )
7 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑝 𝑝𝐴 )
8 6 7 sylibr ( 𝐾 ∈ HL → 𝐴 ≠ ∅ )