Description: At least one atom exists. (Contributed by NM, 15-Jul-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | atex.1 | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| Assertion | atex | ⊢ ( 𝐾 ∈ HL → 𝐴 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atex.1 | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | 1 | hl2at | ⊢ ( 𝐾 ∈ HL → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 𝑝 ≠ 𝑞 ) |
| 3 | df-rex | ⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 𝑝 ≠ 𝑞 ↔ ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝐴 𝑝 ≠ 𝑞 ) ) | |
| 4 | exsimpl | ⊢ ( ∃ 𝑝 ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝐴 𝑝 ≠ 𝑞 ) → ∃ 𝑝 𝑝 ∈ 𝐴 ) | |
| 5 | 3 4 | sylbi | ⊢ ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 𝑝 ≠ 𝑞 → ∃ 𝑝 𝑝 ∈ 𝐴 ) |
| 6 | 2 5 | syl | ⊢ ( 𝐾 ∈ HL → ∃ 𝑝 𝑝 ∈ 𝐴 ) |
| 7 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑝 𝑝 ∈ 𝐴 ) | |
| 8 | 6 7 | sylibr | ⊢ ( 𝐾 ∈ HL → 𝐴 ≠ ∅ ) |