Metamath Proof Explorer


Theorem atexchcvrN

Description: Atom exchange property. Version of hlatexch2 with covers relation. (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses atexchcvr.j = ( join ‘ 𝐾 )
atexchcvr.a 𝐴 = ( Atoms ‘ 𝐾 )
atexchcvr.c 𝐶 = ( ⋖ ‘ 𝐾 )
Assertion atexchcvrN ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) → ( 𝑃 𝐶 ( 𝑄 𝑅 ) → 𝑄 𝐶 ( 𝑃 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 atexchcvr.j = ( join ‘ 𝐾 )
2 atexchcvr.a 𝐴 = ( Atoms ‘ 𝐾 )
3 atexchcvr.c 𝐶 = ( ⋖ ‘ 𝐾 )
4 simpl1 ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑃 𝐶 ( 𝑄 𝑅 ) ) → 𝐾 ∈ HL )
5 simpl21 ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑃 𝐶 ( 𝑄 𝑅 ) ) → 𝑃𝐴 )
6 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
7 6 2 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
8 5 7 syl ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑃 𝐶 ( 𝑄 𝑅 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
9 4 hllatd ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑃 𝐶 ( 𝑄 𝑅 ) ) → 𝐾 ∈ Lat )
10 simpl22 ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑃 𝐶 ( 𝑄 𝑅 ) ) → 𝑄𝐴 )
11 6 2 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
12 10 11 syl ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑃 𝐶 ( 𝑄 𝑅 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
13 simpl23 ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑃 𝐶 ( 𝑄 𝑅 ) ) → 𝑅𝐴 )
14 6 2 atbase ( 𝑅𝐴𝑅 ∈ ( Base ‘ 𝐾 ) )
15 13 14 syl ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑃 𝐶 ( 𝑄 𝑅 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) )
16 6 1 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
17 9 12 15 16 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑃 𝐶 ( 𝑄 𝑅 ) ) → ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) )
18 4 8 17 3jca ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑃 𝐶 ( 𝑄 𝑅 ) ) → ( 𝐾 ∈ HL ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) )
19 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
20 6 19 3 cvrle ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 𝑅 ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑃 𝐶 ( 𝑄 𝑅 ) ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑄 𝑅 ) )
21 18 20 sylancom ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑃 𝐶 ( 𝑄 𝑅 ) ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑄 𝑅 ) )
22 21 ex ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) → ( 𝑃 𝐶 ( 𝑄 𝑅 ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑄 𝑅 ) ) )
23 19 1 2 hlatexch2 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) → ( 𝑃 ( le ‘ 𝐾 ) ( 𝑄 𝑅 ) → 𝑄 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) ) )
24 simpl1 ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑄 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) ) → 𝐾 ∈ HL )
25 simpl22 ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑄 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) ) → 𝑄𝐴 )
26 simpl21 ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑄 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) ) → 𝑃𝐴 )
27 simpl23 ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑄 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) ) → 𝑅𝐴 )
28 simpl3 ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑄 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) ) → 𝑃𝑅 )
29 simpr ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑄 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) ) → 𝑄 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) )
30 19 1 3 2 atcvrj2 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴𝑃𝐴𝑅𝐴 ) ∧ ( 𝑃𝑅𝑄 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) ) ) → 𝑄 𝐶 ( 𝑃 𝑅 ) )
31 24 25 26 27 28 29 30 syl132anc ( ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) ∧ 𝑄 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) ) → 𝑄 𝐶 ( 𝑃 𝑅 ) )
32 31 ex ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) → ( 𝑄 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) → 𝑄 𝐶 ( 𝑃 𝑅 ) ) )
33 22 23 32 3syld ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) → ( 𝑃 𝐶 ( 𝑄 𝑅 ) → 𝑄 𝐶 ( 𝑃 𝑅 ) ) )