| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atexchlt.s |
⊢ < = ( lt ‘ 𝐾 ) |
| 2 |
|
atexchlt.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
atexchlt.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
| 5 |
2 3 4
|
atexchcvrN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) → 𝑄 ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑅 ) ) ) |
| 6 |
1 2 3 4
|
atltcvr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑃 < ( 𝑄 ∨ 𝑅 ) ↔ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) |
| 7 |
6
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 < ( 𝑄 ∨ 𝑅 ) ↔ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) ) |
| 8 |
|
simpl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
| 9 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
| 10 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
| 11 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) |
| 12 |
1 2 3 4
|
atltcvr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑄 < ( 𝑃 ∨ 𝑅 ) ↔ 𝑄 ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑅 ) ) ) |
| 13 |
8 9 10 11 12
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑄 < ( 𝑃 ∨ 𝑅 ) ↔ 𝑄 ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑅 ) ) ) |
| 14 |
13
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑄 < ( 𝑃 ∨ 𝑅 ) ↔ 𝑄 ( ⋖ ‘ 𝐾 ) ( 𝑃 ∨ 𝑅 ) ) ) |
| 15 |
5 7 14
|
3imtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 < ( 𝑄 ∨ 𝑅 ) → 𝑄 < ( 𝑃 ∨ 𝑅 ) ) ) |