Metamath Proof Explorer


Theorem atl0cl

Description: An atomic lattice has a zero element. We can use this in place of op0cl for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses atl0cl.b 𝐵 = ( Base ‘ 𝐾 )
atl0cl.z 0 = ( 0. ‘ 𝐾 )
Assertion atl0cl ( 𝐾 ∈ AtLat → 0𝐵 )

Proof

Step Hyp Ref Expression
1 atl0cl.b 𝐵 = ( Base ‘ 𝐾 )
2 atl0cl.z 0 = ( 0. ‘ 𝐾 )
3 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
4 1 3 2 p0val ( 𝐾 ∈ AtLat → 0 = ( ( glb ‘ 𝐾 ) ‘ 𝐵 ) )
5 id ( 𝐾 ∈ AtLat → 𝐾 ∈ AtLat )
6 eqid ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 )
7 1 6 3 atl0dm ( 𝐾 ∈ AtLat → 𝐵 ∈ dom ( glb ‘ 𝐾 ) )
8 1 3 5 7 glbcl ( 𝐾 ∈ AtLat → ( ( glb ‘ 𝐾 ) ‘ 𝐵 ) ∈ 𝐵 )
9 4 8 eqeltrd ( 𝐾 ∈ AtLat → 0𝐵 )