Description: An atomic lattice has a zero element. We can use this in place of op0cl for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | atl0cl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
atl0cl.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
Assertion | atl0cl | ⊢ ( 𝐾 ∈ AtLat → 0 ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atl0cl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
2 | atl0cl.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
3 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
4 | 1 3 2 | p0val | ⊢ ( 𝐾 ∈ AtLat → 0 = ( ( glb ‘ 𝐾 ) ‘ 𝐵 ) ) |
5 | id | ⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ AtLat ) | |
6 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
7 | 1 6 3 | atl0dm | ⊢ ( 𝐾 ∈ AtLat → 𝐵 ∈ dom ( glb ‘ 𝐾 ) ) |
8 | 1 3 5 7 | glbcl | ⊢ ( 𝐾 ∈ AtLat → ( ( glb ‘ 𝐾 ) ‘ 𝐵 ) ∈ 𝐵 ) |
9 | 4 8 | eqeltrd | ⊢ ( 𝐾 ∈ AtLat → 0 ∈ 𝐵 ) |