Metamath Proof Explorer


Theorem atl0dm

Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018)

Ref Expression
Hypotheses atl01dm.b 𝐵 = ( Base ‘ 𝐾 )
atl01dm.u 𝑈 = ( lub ‘ 𝐾 )
atl01dm.g 𝐺 = ( glb ‘ 𝐾 )
Assertion atl0dm ( 𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺 )

Proof

Step Hyp Ref Expression
1 atl01dm.b 𝐵 = ( Base ‘ 𝐾 )
2 atl01dm.u 𝑈 = ( lub ‘ 𝐾 )
3 atl01dm.g 𝐺 = ( glb ‘ 𝐾 )
4 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
5 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
6 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
7 1 3 4 5 6 isatl ( 𝐾 ∈ AtLat ↔ ( 𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀ 𝑥𝐵 ( 𝑥 ≠ ( 0. ‘ 𝐾 ) → ∃ 𝑦 ∈ ( Atoms ‘ 𝐾 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ) )
8 7 simp2bi ( 𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺 )