Metamath Proof Explorer


Theorem atl0le

Description: Orthoposet zero is less than or equal to any element. ( ch0le analog.) (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses atl0le.b 𝐵 = ( Base ‘ 𝐾 )
atl0le.l = ( le ‘ 𝐾 )
atl0le.z 0 = ( 0. ‘ 𝐾 )
Assertion atl0le ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 0 𝑋 )

Proof

Step Hyp Ref Expression
1 atl0le.b 𝐵 = ( Base ‘ 𝐾 )
2 atl0le.l = ( le ‘ 𝐾 )
3 atl0le.z 0 = ( 0. ‘ 𝐾 )
4 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
5 simpl ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 𝐾 ∈ AtLat )
6 simpr ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 𝑋𝐵 )
7 eqid ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 )
8 1 7 4 atl0dm ( 𝐾 ∈ AtLat → 𝐵 ∈ dom ( glb ‘ 𝐾 ) )
9 8 adantr ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 𝐵 ∈ dom ( glb ‘ 𝐾 ) )
10 1 4 2 3 5 6 9 p0le ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 0 𝑋 )