| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atlatle.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | atlatle.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | atlatle.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | simpl13 | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝐾  ∈  AtLat ) | 
						
							| 5 |  | atlpos | ⊢ ( 𝐾  ∈  AtLat  →  𝐾  ∈  Poset ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝐾  ∈  Poset ) | 
						
							| 7 | 1 3 | atbase | ⊢ ( 𝑝  ∈  𝐴  →  𝑝  ∈  𝐵 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝑝  ∈  𝐵 ) | 
						
							| 9 |  | simpl2 | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
						
							| 10 |  | simpl3 | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  𝑌  ∈  𝐵 ) | 
						
							| 11 | 1 2 | postr | ⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑝  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑝  ≤  𝑋  ∧  𝑋  ≤  𝑌 )  →  𝑝  ≤  𝑌 ) ) | 
						
							| 12 | 6 8 9 10 11 | syl13anc | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ( 𝑝  ≤  𝑋  ∧  𝑋  ≤  𝑌 )  →  𝑝  ≤  𝑌 ) ) | 
						
							| 13 | 12 | expcomd | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( 𝑋  ≤  𝑌  →  ( 𝑝  ≤  𝑋  →  𝑝  ≤  𝑌 ) ) ) | 
						
							| 14 | 13 | ralrimdva | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  →  ∀ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  →  𝑝  ≤  𝑌 ) ) ) | 
						
							| 15 |  | ss2rab | ⊢ ( { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 }  ⊆  { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 }  ↔  ∀ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  →  𝑝  ≤  𝑌 ) ) | 
						
							| 16 |  | simpl12 | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 }  ⊆  { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 } )  →  𝐾  ∈  CLat ) | 
						
							| 17 |  | ssrab2 | ⊢ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 }  ⊆  𝐴 | 
						
							| 18 | 1 3 | atssbase | ⊢ 𝐴  ⊆  𝐵 | 
						
							| 19 | 17 18 | sstri | ⊢ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 }  ⊆  𝐵 | 
						
							| 20 |  | eqid | ⊢ ( lub ‘ 𝐾 )  =  ( lub ‘ 𝐾 ) | 
						
							| 21 | 1 2 20 | lubss | ⊢ ( ( 𝐾  ∈  CLat  ∧  { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 }  ⊆  𝐵  ∧  { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 }  ⊆  { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 } )  →  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 } )  ≤  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 } ) ) | 
						
							| 22 | 19 21 | mp3an2 | ⊢ ( ( 𝐾  ∈  CLat  ∧  { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 }  ⊆  { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 } )  →  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 } )  ≤  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 } ) ) | 
						
							| 23 | 16 22 | sylancom | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 }  ⊆  { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 } )  →  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 } )  ≤  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 } ) ) | 
						
							| 24 | 23 | ex | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 }  ⊆  { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 }  →  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 } )  ≤  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 } ) ) ) | 
						
							| 25 | 1 2 20 3 | atlatmstc | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 } )  =  𝑋 ) | 
						
							| 26 | 25 | 3adant3 | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 } )  =  𝑋 ) | 
						
							| 27 | 1 2 20 3 | atlatmstc | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑌  ∈  𝐵 )  →  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 } )  =  𝑌 ) | 
						
							| 28 | 27 | 3adant2 | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 } )  =  𝑌 ) | 
						
							| 29 | 26 28 | breq12d | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 } )  ≤  ( ( lub ‘ 𝐾 ) ‘ { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 } )  ↔  𝑋  ≤  𝑌 ) ) | 
						
							| 30 | 24 29 | sylibd | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑋 }  ⊆  { 𝑝  ∈  𝐴  ∣  𝑝  ≤  𝑌 }  →  𝑋  ≤  𝑌 ) ) | 
						
							| 31 | 15 30 | biimtrrid | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ∀ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  →  𝑝  ≤  𝑌 )  →  𝑋  ≤  𝑌 ) ) | 
						
							| 32 | 14 31 | impbid | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  ≤  𝑌  ↔  ∀ 𝑝  ∈  𝐴 ( 𝑝  ≤  𝑋  →  𝑝  ≤  𝑌 ) ) ) |