| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atlatmstc.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | atlatmstc.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | atlatmstc.u | ⊢  1   =  ( lub ‘ 𝐾 ) | 
						
							| 4 |  | atlatmstc.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 5 |  | simpl2 | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  𝐾  ∈  CLat ) | 
						
							| 6 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 }  ⊆  𝐵 | 
						
							| 7 | 1 4 | atssbase | ⊢ 𝐴  ⊆  𝐵 | 
						
							| 8 |  | rabss2 | ⊢ ( 𝐴  ⊆  𝐵  →  { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 }  ⊆  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 }  ⊆  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } | 
						
							| 10 | 1 2 3 | lubss | ⊢ ( ( 𝐾  ∈  CLat  ∧  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 }  ⊆  𝐵  ∧  { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 }  ⊆  { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } )  →  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ≤  (  1  ‘ { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } ) ) | 
						
							| 11 | 6 9 10 | mp3an23 | ⊢ ( 𝐾  ∈  CLat  →  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ≤  (  1  ‘ { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } ) ) | 
						
							| 12 | 5 11 | syl | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ≤  (  1  ‘ { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } ) ) | 
						
							| 13 |  | atlpos | ⊢ ( 𝐾  ∈  AtLat  →  𝐾  ∈  Poset ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  →  𝐾  ∈  Poset ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵 )  →  𝐾  ∈  Poset ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 17 | 1 2 3 15 16 | lubid | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵 )  →  (  1  ‘ { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } )  =  𝑋 ) | 
						
							| 18 | 14 17 | sylan | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  (  1  ‘ { 𝑦  ∈  𝐵  ∣  𝑦  ≤  𝑋 } )  =  𝑋 ) | 
						
							| 19 | 12 18 | breqtrd | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ≤  𝑋 ) | 
						
							| 20 |  | breq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ≤  𝑋  ↔  𝑥  ≤  𝑋 ) ) | 
						
							| 21 | 20 | elrab | ⊢ ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 }  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑋 ) ) | 
						
							| 22 |  | simpll2 | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  →  𝐾  ∈  CLat ) | 
						
							| 23 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 }  ⊆  𝐴 | 
						
							| 24 | 23 7 | sstri | ⊢ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 }  ⊆  𝐵 | 
						
							| 25 | 1 2 3 | lubel | ⊢ ( ( 𝐾  ∈  CLat  ∧  𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 }  ∧  { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 }  ⊆  𝐵 )  →  𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) | 
						
							| 26 | 24 25 | mp3an3 | ⊢ ( ( 𝐾  ∈  CLat  ∧  𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  →  𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) | 
						
							| 27 | 22 26 | sylancom | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  →  𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) | 
						
							| 28 | 27 | ex | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 }  →  𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) | 
						
							| 29 | 21 28 | biimtrrid | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑋 )  →  𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) | 
						
							| 30 | 29 | expdimp | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ≤  𝑋  →  𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) | 
						
							| 31 |  | simpll3 | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝐾  ∈  AtLat ) | 
						
							| 32 |  | eqid | ⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 ) | 
						
							| 33 | 32 4 | atn0 | ⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑥  ∈  𝐴 )  →  𝑥  ≠  ( 0. ‘ 𝐾 ) ) | 
						
							| 34 | 31 33 | sylancom | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ≠  ( 0. ‘ 𝐾 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) )  →  𝑥  ≠  ( 0. ‘ 𝐾 ) ) | 
						
							| 36 |  | simpl3 | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  𝐾  ∈  AtLat ) | 
						
							| 37 |  | atllat | ⊢ ( 𝐾  ∈  AtLat  →  𝐾  ∈  Lat ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  𝐾  ∈  Lat ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝐾  ∈  Lat ) | 
						
							| 40 | 1 4 | atbase | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐵 ) | 
						
							| 42 | 1 3 | clatlubcl | ⊢ ( ( 𝐾  ∈  CLat  ∧  { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 }  ⊆  𝐵 )  →  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ∈  𝐵 ) | 
						
							| 43 | 5 24 42 | sylancl | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ∈  𝐵 ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ∈  𝐵 ) | 
						
							| 45 |  | simpl1 | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  𝐾  ∈  OML ) | 
						
							| 46 |  | omlop | ⊢ ( 𝐾  ∈  OML  →  𝐾  ∈  OP ) | 
						
							| 47 | 45 46 | syl | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  𝐾  ∈  OP ) | 
						
							| 48 |  | eqid | ⊢ ( oc ‘ 𝐾 )  =  ( oc ‘ 𝐾 ) | 
						
							| 49 | 1 48 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) )  ∈  𝐵 ) | 
						
							| 50 | 47 43 49 | syl2anc | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) )  ∈  𝐵 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) )  ∈  𝐵 ) | 
						
							| 52 |  | eqid | ⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 ) | 
						
							| 53 | 1 2 52 | latlem12 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑥  ∈  𝐵  ∧  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ∈  𝐵  ∧  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) )  ∈  𝐵 ) )  →  ( ( 𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ∧  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ↔  𝑥  ≤  ( (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) ) | 
						
							| 54 | 39 41 44 51 53 | syl13anc | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ∧  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ↔  𝑥  ≤  ( (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) ) | 
						
							| 55 | 1 48 52 32 | opnoncon | ⊢ ( ( 𝐾  ∈  OP  ∧  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ∈  𝐵 )  →  ( (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 56 | 47 43 55 | syl2anc | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  ( (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 57 | 56 | breq2d | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  ( 𝑥  ≤  ( (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ↔  𝑥  ≤  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ≤  ( (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ↔  𝑥  ≤  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 59 | 1 2 32 | ople0 | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ≤  ( 0. ‘ 𝐾 )  ↔  𝑥  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 60 | 47 40 59 | syl2an | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ≤  ( 0. ‘ 𝐾 )  ↔  𝑥  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 61 | 54 58 60 | 3bitrd | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ∧  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ↔  𝑥  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 62 | 61 | biimpa | ⊢ ( ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  ∧  ( 𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ∧  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) )  →  𝑥  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 63 | 62 | expr | ⊢ ( ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) )  →  ( 𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) )  →  𝑥  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 64 | 63 | necon3ad | ⊢ ( ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) )  →  ( 𝑥  ≠  ( 0. ‘ 𝐾 )  →  ¬  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) | 
						
							| 65 | 35 64 | mpd | ⊢ ( ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  ∧  𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) )  →  ¬  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) | 
						
							| 66 | 65 | ex | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ≤  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  →  ¬  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) | 
						
							| 67 | 30 66 | syld | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ≤  𝑋  →  ¬  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) | 
						
							| 68 |  | imnan | ⊢ ( ( 𝑥  ≤  𝑋  →  ¬  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ↔  ¬  ( 𝑥  ≤  𝑋  ∧  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) | 
						
							| 69 | 67 68 | sylib | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ¬  ( 𝑥  ≤  𝑋  ∧  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) | 
						
							| 70 |  | simplr | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
						
							| 71 | 1 2 52 | latlem12 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑥  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) )  ∈  𝐵 ) )  →  ( ( 𝑥  ≤  𝑋  ∧  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ↔  𝑥  ≤  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) ) | 
						
							| 72 | 39 41 70 51 71 | syl13anc | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ≤  𝑋  ∧  𝑥  ≤  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ↔  𝑥  ≤  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) ) | 
						
							| 73 | 69 72 | mtbid | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ¬  𝑥  ≤  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) | 
						
							| 74 | 73 | nrexdv | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  ¬  ∃ 𝑥  ∈  𝐴 𝑥  ≤  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) | 
						
							| 75 |  | simpll3 | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ≠  ( 0. ‘ 𝐾 ) )  →  𝐾  ∈  AtLat ) | 
						
							| 76 |  | simpr | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 77 | 1 52 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) )  ∈  𝐵 )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ∈  𝐵 ) | 
						
							| 78 | 38 76 50 77 | syl3anc | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ∈  𝐵 ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ≠  ( 0. ‘ 𝐾 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ∈  𝐵 ) | 
						
							| 80 |  | simpr | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ≠  ( 0. ‘ 𝐾 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ≠  ( 0. ‘ 𝐾 ) ) | 
						
							| 81 | 1 2 32 4 | atlex | ⊢ ( ( 𝐾  ∈  AtLat  ∧  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ∈  𝐵  ∧  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ≠  ( 0. ‘ 𝐾 ) )  →  ∃ 𝑥  ∈  𝐴 𝑥  ≤  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) | 
						
							| 82 | 75 79 80 81 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ≠  ( 0. ‘ 𝐾 ) )  →  ∃ 𝑥  ∈  𝐴 𝑥  ≤  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) | 
						
							| 83 | 82 | ex | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  ≠  ( 0. ‘ 𝐾 )  →  ∃ 𝑥  ∈  𝐴 𝑥  ≤  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) ) ) ) | 
						
							| 84 | 83 | necon1bd | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  ( ¬  ∃ 𝑥  ∈  𝐴 𝑥  ≤  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  =  ( 0. ‘ 𝐾 ) ) ) | 
						
							| 85 | 74 84 | mpd | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  =  ( 0. ‘ 𝐾 ) ) | 
						
							| 86 | 1 2 52 48 32 | omllaw3 | ⊢ ( ( 𝐾  ∈  OML  ∧  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( ( (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ≤  𝑋  ∧  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  =  ( 0. ‘ 𝐾 ) )  →  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  =  𝑋 ) ) | 
						
							| 87 | 45 43 76 86 | syl3anc | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  ( ( (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  ≤  𝑋  ∧  ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } ) ) )  =  ( 0. ‘ 𝐾 ) )  →  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  =  𝑋 ) ) | 
						
							| 88 | 19 85 87 | mp2and | ⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  AtLat )  ∧  𝑋  ∈  𝐵 )  →  (  1  ‘ { 𝑦  ∈  𝐴  ∣  𝑦  ≤  𝑋 } )  =  𝑋 ) |