| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atlatmstc.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
atlatmstc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
atlatmstc.u |
⊢ 1 = ( lub ‘ 𝐾 ) |
| 4 |
|
atlatmstc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ CLat ) |
| 6 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 |
| 7 |
1 4
|
atssbase |
⊢ 𝐴 ⊆ 𝐵 |
| 8 |
|
rabss2 |
⊢ ( 𝐴 ⊆ 𝐵 → { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) |
| 9 |
7 8
|
ax-mp |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } |
| 10 |
1 2 3
|
lubss |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ∧ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) ) |
| 11 |
6 9 10
|
mp3an23 |
⊢ ( 𝐾 ∈ CLat → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) ) |
| 12 |
5 11
|
syl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) ) |
| 13 |
|
atlpos |
⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset ) |
| 14 |
13
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) → 𝐾 ∈ Poset ) |
| 15 |
|
simpl |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
| 16 |
|
simpr |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 17 |
1 2 3 15 16
|
lubid |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |
| 18 |
14 17
|
sylan |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |
| 19 |
12 18
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ 𝑋 ) |
| 20 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≤ 𝑋 ↔ 𝑥 ≤ 𝑋 ) ) |
| 21 |
20
|
elrab |
⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑋 ) ) |
| 22 |
|
simpll2 |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) → 𝐾 ∈ CLat ) |
| 23 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐴 |
| 24 |
23 7
|
sstri |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 |
| 25 |
1 2 3
|
lubel |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ∧ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ) → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) |
| 26 |
24 25
|
mp3an3 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) |
| 27 |
22 26
|
sylancom |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) |
| 28 |
27
|
ex |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) |
| 29 |
21 28
|
biimtrrid |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑋 ) → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) |
| 30 |
29
|
expdimp |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑋 → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) |
| 31 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
| 32 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 33 |
32 4
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ( 0. ‘ 𝐾 ) ) |
| 34 |
31 33
|
sylancom |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ( 0. ‘ 𝐾 ) ) |
| 35 |
34
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → 𝑥 ≠ ( 0. ‘ 𝐾 ) ) |
| 36 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) |
| 37 |
|
atllat |
⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Lat ) |
| 38 |
36 37
|
syl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 39 |
38
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
| 40 |
1 4
|
atbase |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) |
| 41 |
40
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 42 |
1 3
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) |
| 43 |
5 24 42
|
sylancl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) |
| 44 |
43
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) |
| 45 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OML ) |
| 46 |
|
omlop |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OP ) |
| 47 |
45 46
|
syl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 48 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
| 49 |
1 48
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) |
| 50 |
47 43 49
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) |
| 51 |
50
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) |
| 52 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
| 53 |
1 2 52
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) ) → ( ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
| 54 |
39 41 44 51 53
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
| 55 |
1 48 52 32
|
opnoncon |
⊢ ( ( 𝐾 ∈ OP ∧ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) → ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) |
| 56 |
47 43 55
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) |
| 57 |
56
|
breq2d |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ≤ ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( 0. ‘ 𝐾 ) ) ) |
| 58 |
57
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( 0. ‘ 𝐾 ) ) ) |
| 59 |
1 2 32
|
ople0 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ≤ ( 0. ‘ 𝐾 ) ↔ 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
| 60 |
47 40 59
|
syl2an |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ ( 0. ‘ 𝐾 ) ↔ 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
| 61 |
54 58 60
|
3bitrd |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
| 62 |
61
|
biimpa |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) → 𝑥 = ( 0. ‘ 𝐾 ) ) |
| 63 |
62
|
expr |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → ( 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
| 64 |
63
|
necon3ad |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → ( 𝑥 ≠ ( 0. ‘ 𝐾 ) → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 65 |
35 64
|
mpd |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) |
| 66 |
65
|
ex |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 67 |
30 66
|
syld |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑋 → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 68 |
|
imnan |
⊢ ( ( 𝑥 ≤ 𝑋 → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ ¬ ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 69 |
67 68
|
sylib |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ¬ ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 70 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
| 71 |
1 2 52
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
| 72 |
39 41 70 51 71
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
| 73 |
69 72
|
mtbid |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 74 |
73
|
nrexdv |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ¬ ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 75 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → 𝐾 ∈ AtLat ) |
| 76 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 77 |
1 52
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ∈ 𝐵 ) |
| 78 |
38 76 50 77
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ∈ 𝐵 ) |
| 79 |
78
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ∈ 𝐵 ) |
| 80 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) |
| 81 |
1 2 32 4
|
atlex |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ∈ 𝐵 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 82 |
75 79 80 81
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 83 |
82
|
ex |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) → ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
| 84 |
83
|
necon1bd |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ¬ ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
| 85 |
74 84
|
mpd |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) |
| 86 |
1 2 52 48 32
|
omllaw3 |
⊢ ( ( 𝐾 ∈ OML ∧ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ 𝑋 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) ) |
| 87 |
45 43 76 86
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ 𝑋 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) ) |
| 88 |
19 85 87
|
mp2and |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |