Step |
Hyp |
Ref |
Expression |
1 |
|
atlatmstc.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
atlatmstc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
atlatmstc.u |
⊢ 1 = ( lub ‘ 𝐾 ) |
4 |
|
atlatmstc.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ CLat ) |
6 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 |
7 |
1 4
|
atssbase |
⊢ 𝐴 ⊆ 𝐵 |
8 |
|
rabss2 |
⊢ ( 𝐴 ⊆ 𝐵 → { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) |
9 |
7 8
|
ax-mp |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } |
10 |
1 2 3
|
lubss |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ∧ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) ) |
11 |
6 9 10
|
mp3an23 |
⊢ ( 𝐾 ∈ CLat → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) ) |
12 |
5 11
|
syl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) ) |
13 |
|
atlpos |
⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) → 𝐾 ∈ Poset ) |
15 |
|
simpl |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
16 |
|
simpr |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
17 |
1 2 3 15 16
|
lubid |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |
18 |
14 17
|
sylan |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |
19 |
12 18
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ 𝑋 ) |
20 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≤ 𝑋 ↔ 𝑥 ≤ 𝑋 ) ) |
21 |
20
|
elrab |
⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑋 ) ) |
22 |
|
simpll2 |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) → 𝐾 ∈ CLat ) |
23 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐴 |
24 |
23 7
|
sstri |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 |
25 |
1 2 3
|
lubel |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ∧ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ) → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) |
26 |
24 25
|
mp3an3 |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) |
27 |
22 26
|
sylancom |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) |
28 |
27
|
ex |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) |
29 |
21 28
|
syl5bir |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑋 ) → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) |
30 |
29
|
expdimp |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑋 → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) |
31 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
32 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
33 |
32 4
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ( 0. ‘ 𝐾 ) ) |
34 |
31 33
|
sylancom |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ( 0. ‘ 𝐾 ) ) |
35 |
34
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → 𝑥 ≠ ( 0. ‘ 𝐾 ) ) |
36 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) |
37 |
|
atllat |
⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Lat ) |
38 |
36 37
|
syl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
39 |
38
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
40 |
1 4
|
atbase |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) |
41 |
40
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
42 |
1 3
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) |
43 |
5 24 42
|
sylancl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) |
44 |
43
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) |
45 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OML ) |
46 |
|
omlop |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OP ) |
47 |
45 46
|
syl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
48 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
49 |
1 48
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) |
50 |
47 43 49
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) |
51 |
50
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) |
52 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
53 |
1 2 52
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) ) → ( ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
54 |
39 41 44 51 53
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
55 |
1 48 52 32
|
opnoncon |
⊢ ( ( 𝐾 ∈ OP ∧ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) → ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) |
56 |
47 43 55
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) |
57 |
56
|
breq2d |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ≤ ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( 0. ‘ 𝐾 ) ) ) |
58 |
57
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( 0. ‘ 𝐾 ) ) ) |
59 |
1 2 32
|
ople0 |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ≤ ( 0. ‘ 𝐾 ) ↔ 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
60 |
47 40 59
|
syl2an |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ ( 0. ‘ 𝐾 ) ↔ 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
61 |
54 58 60
|
3bitrd |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
62 |
61
|
biimpa |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) → 𝑥 = ( 0. ‘ 𝐾 ) ) |
63 |
62
|
expr |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → ( 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
64 |
63
|
necon3ad |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → ( 𝑥 ≠ ( 0. ‘ 𝐾 ) → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
65 |
35 64
|
mpd |
⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) |
66 |
65
|
ex |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
67 |
30 66
|
syld |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑋 → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
68 |
|
imnan |
⊢ ( ( 𝑥 ≤ 𝑋 → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ ¬ ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
69 |
67 68
|
sylib |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ¬ ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
70 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
71 |
1 2 52
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
72 |
39 41 70 51 71
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
73 |
69 72
|
mtbid |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
74 |
73
|
nrexdv |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ¬ ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
75 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → 𝐾 ∈ AtLat ) |
76 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
77 |
1 52
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ∈ 𝐵 ) |
78 |
38 76 50 77
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ∈ 𝐵 ) |
79 |
78
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ∈ 𝐵 ) |
80 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) |
81 |
1 2 32 4
|
atlex |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ∈ 𝐵 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
82 |
75 79 80 81
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
83 |
82
|
ex |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) → ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
84 |
83
|
necon1bd |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ¬ ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
85 |
74 84
|
mpd |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) |
86 |
1 2 52 48 32
|
omllaw3 |
⊢ ( ( 𝐾 ∈ OML ∧ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ 𝑋 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) ) |
87 |
45 43 76 86
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ 𝑋 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) ) |
88 |
19 85 87
|
mp2and |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |