Metamath Proof Explorer


Theorem atle

Description: Any nonzero element has an atom under it. (Contributed by NM, 28-Jun-2012)

Ref Expression
Hypotheses atle.b 𝐵 = ( Base ‘ 𝐾 )
atle.l = ( le ‘ 𝐾 )
atle.z 0 = ( 0. ‘ 𝐾 )
atle.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atle ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃ 𝑝𝐴 𝑝 𝑋 )

Proof

Step Hyp Ref Expression
1 atle.b 𝐵 = ( Base ‘ 𝐾 )
2 atle.l = ( le ‘ 𝐾 )
3 atle.z 0 = ( 0. ‘ 𝐾 )
4 atle.a 𝐴 = ( Atoms ‘ 𝐾 )
5 simp1 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝐾 ∈ HL )
6 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
7 6 3ad2ant1 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝐾 ∈ OP )
8 1 3 op0cl ( 𝐾 ∈ OP → 0𝐵 )
9 7 8 syl ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 0𝐵 )
10 simp2 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝑋𝐵 )
11 simp3 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 𝑋0 )
12 eqid ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 )
13 1 12 3 opltn0 ( ( 𝐾 ∈ OP ∧ 𝑋𝐵 ) → ( 0 ( lt ‘ 𝐾 ) 𝑋𝑋0 ) )
14 7 10 13 syl2anc ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ( 0 ( lt ‘ 𝐾 ) 𝑋𝑋0 ) )
15 11 14 mpbird ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → 0 ( lt ‘ 𝐾 ) 𝑋 )
16 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
17 1 2 12 16 4 hlrelat ( ( ( 𝐾 ∈ HL ∧ 0𝐵𝑋𝐵 ) ∧ 0 ( lt ‘ 𝐾 ) 𝑋 ) → ∃ 𝑝𝐴 ( 0 ( lt ‘ 𝐾 ) ( 0 ( join ‘ 𝐾 ) 𝑝 ) ∧ ( 0 ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) )
18 5 9 10 15 17 syl31anc ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃ 𝑝𝐴 ( 0 ( lt ‘ 𝐾 ) ( 0 ( join ‘ 𝐾 ) 𝑝 ) ∧ ( 0 ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) )
19 simpl1 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴 ) → 𝐾 ∈ HL )
20 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
21 19 20 syl ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴 ) → 𝐾 ∈ OL )
22 1 4 atbase ( 𝑝𝐴𝑝𝐵 )
23 22 adantl ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴 ) → 𝑝𝐵 )
24 1 16 3 olj02 ( ( 𝐾 ∈ OL ∧ 𝑝𝐵 ) → ( 0 ( join ‘ 𝐾 ) 𝑝 ) = 𝑝 )
25 21 23 24 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴 ) → ( 0 ( join ‘ 𝐾 ) 𝑝 ) = 𝑝 )
26 25 breq1d ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴 ) → ( ( 0 ( join ‘ 𝐾 ) 𝑝 ) 𝑋𝑝 𝑋 ) )
27 26 biimpd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴 ) → ( ( 0 ( join ‘ 𝐾 ) 𝑝 ) 𝑋𝑝 𝑋 ) )
28 27 adantld ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) ∧ 𝑝𝐴 ) → ( ( 0 ( lt ‘ 𝐾 ) ( 0 ( join ‘ 𝐾 ) 𝑝 ) ∧ ( 0 ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) → 𝑝 𝑋 ) )
29 28 reximdva ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ( ∃ 𝑝𝐴 ( 0 ( lt ‘ 𝐾 ) ( 0 ( join ‘ 𝐾 ) 𝑝 ) ∧ ( 0 ( join ‘ 𝐾 ) 𝑝 ) 𝑋 ) → ∃ 𝑝𝐴 𝑝 𝑋 ) )
30 18 29 mpd ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑋0 ) → ∃ 𝑝𝐴 𝑝 𝑋 )