Description: Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atlene.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| atlene.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| atlene.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atleneN | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑅 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑄 ≠ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlene.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | atlene.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | atlene.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) | |
| 5 | 1 2 4 3 | atcvrj1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑅 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) |
| 6 | 2 4 3 | atcvrneN | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ≠ 𝑅 ) |
| 7 | 5 6 | syld3an3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑅 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) → 𝑄 ≠ 𝑅 ) |