Metamath Proof Explorer


Theorem atleneN

Description: Inequality derived from atom condition. (Contributed by NM, 7-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses atlene.l = ( le ‘ 𝐾 )
atlene.j = ( join ‘ 𝐾 )
atlene.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atleneN ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑅𝑃 ( 𝑄 𝑅 ) ) ) → 𝑄𝑅 )

Proof

Step Hyp Ref Expression
1 atlene.l = ( le ‘ 𝐾 )
2 atlene.j = ( join ‘ 𝐾 )
3 atlene.a 𝐴 = ( Atoms ‘ 𝐾 )
4 eqid ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 )
5 1 2 4 3 atcvrj1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑅𝑃 ( 𝑄 𝑅 ) ) ) → 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑄 𝑅 ) )
6 2 4 3 atcvrneN ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃 ( ⋖ ‘ 𝐾 ) ( 𝑄 𝑅 ) ) → 𝑄𝑅 )
7 5 6 syld3an3 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑅𝑃 ( 𝑄 𝑅 ) ) ) → 𝑄𝑅 )