| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atlex.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							atlex.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							atlex.z | 
							⊢  0   =  ( 0. ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							atlex.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( glb ‘ 𝐾 )  =  ( glb ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								1 5 2 3 4
							 | 
							isatl | 
							⊢ ( 𝐾  ∈  AtLat  ↔  ( 𝐾  ∈  Lat  ∧  𝐵  ∈  dom  ( glb ‘ 𝐾 )  ∧  ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simp3bi | 
							⊢ ( 𝐾  ∈  AtLat  →  ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							neeq1 | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ≠   0   ↔  𝑋  ≠   0  ) )  | 
						
						
							| 9 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑦  ≤  𝑥  ↔  𝑦  ≤  𝑋 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							rexbidv | 
							⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥  ↔  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑋 ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑥  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  ↔  ( 𝑋  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑋 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							rspccv | 
							⊢ ( ∀ 𝑥  ∈  𝐵 ( 𝑥  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  ( 𝑋  ∈  𝐵  →  ( 𝑋  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑋 ) ) )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							syl | 
							⊢ ( 𝐾  ∈  AtLat  →  ( 𝑋  ∈  𝐵  →  ( 𝑋  ≠   0   →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑋 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							3imp | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  ∃ 𝑦  ∈  𝐴 𝑦  ≤  𝑋 )  |