Metamath Proof Explorer


Theorem atlle0

Description: An element less than or equal to zero equals zero. ( chle0 analog.) (Contributed by NM, 21-Oct-2011)

Ref Expression
Hypotheses atl0le.b 𝐵 = ( Base ‘ 𝐾 )
atl0le.l = ( le ‘ 𝐾 )
atl0le.z 0 = ( 0. ‘ 𝐾 )
Assertion atlle0 ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → ( 𝑋 0𝑋 = 0 ) )

Proof

Step Hyp Ref Expression
1 atl0le.b 𝐵 = ( Base ‘ 𝐾 )
2 atl0le.l = ( le ‘ 𝐾 )
3 atl0le.z 0 = ( 0. ‘ 𝐾 )
4 1 2 3 atl0le ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 0 𝑋 )
5 4 biantrud ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → ( 𝑋 0 ↔ ( 𝑋 00 𝑋 ) ) )
6 atlpos ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset )
7 6 adantr ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 𝐾 ∈ Poset )
8 simpr ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 𝑋𝐵 )
9 1 3 atl0cl ( 𝐾 ∈ AtLat → 0𝐵 )
10 9 adantr ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 0𝐵 )
11 1 2 posasymb ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵0𝐵 ) → ( ( 𝑋 00 𝑋 ) ↔ 𝑋 = 0 ) )
12 7 8 10 11 syl3anc ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → ( ( 𝑋 00 𝑋 ) ↔ 𝑋 = 0 ) )
13 5 12 bitrd ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → ( 𝑋 0𝑋 = 0 ) )