Metamath Proof Explorer


Theorem atlltn0

Description: A lattice element greater than zero is nonzero. (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses atlltne0.b 𝐵 = ( Base ‘ 𝐾 )
atlltne0.s < = ( lt ‘ 𝐾 )
atlltne0.z 0 = ( 0. ‘ 𝐾 )
Assertion atlltn0 ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → ( 0 < 𝑋𝑋0 ) )

Proof

Step Hyp Ref Expression
1 atlltne0.b 𝐵 = ( Base ‘ 𝐾 )
2 atlltne0.s < = ( lt ‘ 𝐾 )
3 atlltne0.z 0 = ( 0. ‘ 𝐾 )
4 simpl ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 𝐾 ∈ AtLat )
5 1 3 atl0cl ( 𝐾 ∈ AtLat → 0𝐵 )
6 5 adantr ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 0𝐵 )
7 simpr ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 𝑋𝐵 )
8 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
9 8 2 pltval ( ( 𝐾 ∈ AtLat ∧ 0𝐵𝑋𝐵 ) → ( 0 < 𝑋 ↔ ( 0 ( le ‘ 𝐾 ) 𝑋0𝑋 ) ) )
10 4 6 7 9 syl3anc ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → ( 0 < 𝑋 ↔ ( 0 ( le ‘ 𝐾 ) 𝑋0𝑋 ) ) )
11 necom ( 𝑋00𝑋 )
12 1 8 3 atl0le ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → 0 ( le ‘ 𝐾 ) 𝑋 )
13 12 biantrurd ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → ( 0𝑋 ↔ ( 0 ( le ‘ 𝐾 ) 𝑋0𝑋 ) ) )
14 11 13 bitr2id ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → ( ( 0 ( le ‘ 𝐾 ) 𝑋0𝑋 ) ↔ 𝑋0 ) )
15 10 14 bitrd ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → ( 0 < 𝑋𝑋0 ) )