Metamath Proof Explorer


Theorem atlpos

Description: An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012)

Ref Expression
Assertion atlpos ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset )

Proof

Step Hyp Ref Expression
1 atllat ( 𝐾 ∈ AtLat → 𝐾 ∈ Lat )
2 latpos ( 𝐾 ∈ Lat → 𝐾 ∈ Poset )
3 1 2 syl ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset )