Step |
Hyp |
Ref |
Expression |
1 |
|
atlrelat1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
atlrelat1.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
atlrelat1.s |
⊢ < = ( lt ‘ 𝐾 ) |
4 |
|
atlrelat1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) |
6 |
|
atlpos |
⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
8 |
1 2 3
|
pltnle |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ¬ 𝑌 ≤ 𝑋 ) |
9 |
8
|
ex |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋 ) ) |
10 |
7 9
|
syld3an1 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋 ) ) |
11 |
|
iman |
⊢ ( ( 𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋 ) ↔ ¬ ( 𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋 ) ) |
12 |
|
ancom |
⊢ ( ( 𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋 ) ↔ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) |
13 |
11 12
|
xchbinx |
⊢ ( ( 𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋 ) ↔ ¬ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) |
14 |
13
|
ralbii |
⊢ ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋 ) ↔ ∀ 𝑝 ∈ 𝐴 ¬ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) |
15 |
1 2 4
|
atlatle |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑋 ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋 ) ) ) |
16 |
15
|
3com23 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑋 ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋 ) ) ) |
17 |
16
|
biimprd |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋 ) → 𝑌 ≤ 𝑋 ) ) |
18 |
14 17
|
syl5bir |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑝 ∈ 𝐴 ¬ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) → 𝑌 ≤ 𝑋 ) ) |
19 |
18
|
con3d |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑌 ≤ 𝑋 → ¬ ∀ 𝑝 ∈ 𝐴 ¬ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
20 |
|
dfrex2 |
⊢ ( ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ↔ ¬ ∀ 𝑝 ∈ 𝐴 ¬ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) |
21 |
19 20
|
syl6ibr |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑌 ≤ 𝑋 → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
22 |
10 21
|
syld |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |